Skip to main content

Assessment of Nanomaterials Cytotoxicity and Internalization

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 695))

Abstract

The impact that nanotechnology may have on life and medical sciences is immense and includes novel therapies as much as novel diagnostic and imaging tools, often offering the possibility to combine the two. It is, therefore, of the essence to understand and control the interactions that nanomaterials can have with cells, first at an individual level, focusing on, e.g., binding and internalization events, and then at a tissue level, where diffusion and long-range transport add further complications. Here, we present experimental methods based on selective labeling techniques and the use of effectors for a qualitative and quantitative evaluation of endocytic phenomena involving nanoparticles. The understanding of the cell–material interactions arising from these tests can then form the basis for a model-based evaluation of nanoparticles behavior in 3D tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Labhasetwar, V. (2005) Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr. Opin. Biotechnol. 16, 674–680.

    Article  PubMed  CAS  Google Scholar 

  2. Conner, S. D. and Schmid, S. L. (2003) Regulated portals of entry into the cell. Nature 422, 37–44.

    Article  PubMed  CAS  Google Scholar 

  3. Surti, N., Naik, S., Bagchi, T., Garcion, E., and Misra, A. (2008) Intracellular delivery of nanoparticles with biological systems. Biomaterials 9, 217–223.

    CAS  Google Scholar 

  4. Basarkar, A. and Misra, A. (2008) Intracellular delivery of nanoparticles of an antiasthmatic drug. AAPS PharmSciTech 9, 217–223.

    Article  Google Scholar 

  5. Lemarchand, C., Gref, R., Passirani, C., Garcion, E., Petri, B., Muller, R., Costantini, D., and Couvreur, P. (2006) Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 27, 108–118.

    Article  PubMed  CAS  Google Scholar 

  6. Basarkar, A., Devineni, D., Palaniappan, R., and Singh, J. (2007) Preparation, characterization, cytotoxicity and transfection efficiency of poly(d,l-lactide-co-glycolide) and poly(dl-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA. Int. J. Pharm. 343, 247–254.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, M.-K., Lim, S.-J., and Kim, C.-K. (2007) Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28, 2137–2146.

    Article  PubMed  CAS  Google Scholar 

  8. Lin, W., Huang, Y.-W., Zhou, X.-D., and Ma, Y. (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 217, 252–259.

    Article  PubMed  CAS  Google Scholar 

  9. Azarmi, S., Tao, X., Chen, H., Wang, Z., Finlay, W. H., Lobenberg, R., and Roa, W. H. (2006) Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int. J. Pharm. 319, 155–161.

    Article  PubMed  CAS  Google Scholar 

  10. Panyam, J., Sahoo, S. K., Prabha, S., Bargar, T., and Labhasetwar, V. (2003) Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles. Int. J. Pharm. 262, 1–11.

    Article  PubMed  CAS  Google Scholar 

  11. Panyam, J., Zhou, W. Z., Prabha, S., Sahoo, S. K., and Labhasetwar, V. (2002) Rapid endo-lysosomal escape of poly(d,l-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16, 1217–1226.

    Article  PubMed  CAS  Google Scholar 

  12. Davda, J. and Labhasetwar, V. (2002) Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm. 233, 51–59.

    Article  PubMed  CAS  Google Scholar 

  13. Kawaura, C., Noguchi, A., Furuno, T., and Nakanishi, M. (1998) Atomic force microscopy for studying gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. FEBS Lett. 421, 69–72.

    Article  PubMed  CAS  Google Scholar 

  14. Huth, U. S., Schubert, R., and Peschka-Suss, R. (2006) Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging, J. Control Release 110, 490–504.

    Article  PubMed  CAS  Google Scholar 

  15. Simoes, S., Slepushkin, V., Duzgunes, N., and Pedroso de Lima, M. C. (2001) On the mechanisms of internalization and intracellular delivery mediated by pH-sensitive liposomes. Biochim. Biophys. Acta 1515, 23–37.

    Article  PubMed  CAS  Google Scholar 

  16. Panyam, J. and Labhasetwar, V. (2003) Dynamics of endocytosis and exocytosis of poly(d,l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20, 212–220.

    Article  PubMed  CAS  Google Scholar 

  17. Huth, U. S., Schubert, R., and Peschka-Süss, R. (2006) Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J. Control Release 110, 490–504.

    Article  PubMed  CAS  Google Scholar 

  18. van der Aa, M. A., Huth, U. S., Hafele, S. Y., Schubert, R., Oosting, R. S., Mastrobattista, E., Hennink, W. E., Peschka-Suss, R., Koning, G. A., and Crommelin, D. J. (2007) Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm. Res. 24, 1590–1598.

    Article  PubMed  CAS  Google Scholar 

  19. Nayak, S., Lee, H., Chmielewski, J., and Lyon, L. A. (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J. Am. Chem. Soc. 126, 10258–10259.

    Article  PubMed  CAS  Google Scholar 

  20. de Diesbach, P., N’Kuli, F., Berens, C., Sonveaux, E., Monsigny, M., Roche, A. C., and Courtoy, P. J. (2002) Receptor-mediated endocytosis of phosphodiester oligonucleotides in the HepG2 cell line: evidence for non-conventional intracellular trafficking. Nucleic Acids Res. 30, 1512–1521.

    Article  PubMed  Google Scholar 

  21. des Rieux, A., Ragnarsson, E. G., Gullberg, E., Preat, V., Schneider, Y. J., and Artursson, P. (2005) Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur. J. Pharm. Sci. 25, 455–465.

    Article  PubMed  CAS  Google Scholar 

  22. Kim, S. H., Choi, H. J., Lee, K. W., Hong, N. H., Sung, B. H., Choi, K. Y., Kim, S. M., Chang, S., Eom, S. H., and Song, W. K. (2006) Interaction of SPIN90 with syndapin is implicated in clathrin-mediated endocytic pathway in fibroblasts. Genes Cells 11, 1197–1211.

    Article  PubMed  CAS  Google Scholar 

  23. Kahn, E., Menetrier, F., Vejux, A., Montange, T., Dumas, D., Riedinger, J. M., Frouin, F., Tourneur, Y., Brau, F., Stoltz, J. F., and Lizard, G. (2006) Flow cytometry and spectral imaging multiphoton microscopy analysis of CD36 expression with quantum dots 605 of untreated and 7-ketocholesterol-treated human monocytic cells. Anal. Quant. Cytol. Histol. 28, 316–330.

    PubMed  Google Scholar 

  24. Mo, Y. and Lim, L. Y. (2005) Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J. Control Release 107, 30–42.

    Article  PubMed  CAS  Google Scholar 

  25. Yumoto, R., Nishikawa, H., Okamoto, M., Katayama, H., Nagai, J., and Takano, M. (2006) Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am. J. Physiol. Lung Cell Mol. Physiol. 290, L946–L955.

    Article  PubMed  CAS  Google Scholar 

  26. Amidi, M., Romeijn, S. G., Borchard, G., Junginger, H. E., Hennink, W. E., and Jiskoot, W. (2006) Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control Release 111, 107–116.

    Article  PubMed  CAS  Google Scholar 

  27. Cherukuri, A., Frye, J., French, T., Durack, G., and Voss, E. W. Jr. (1998) FITC-poly-d-lysine conjugates as fluorescent probes to quantify hapten-specific macrophage receptor binding and uptake kinetics. Cytometry 31, 110–124.

    Article  PubMed  CAS  Google Scholar 

  28. Huang, M., Ma, Z., Khor, E., and Lim, L. Y. (2002) Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm. Res. 19, 1488–1494.

    Article  PubMed  CAS  Google Scholar 

  29. Rejman, J., Bragonzi, A., and Conese, M. (2005) Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol. Ther. 12, 468–474.

    Article  PubMed  CAS  Google Scholar 

  30. Huang, M., Khor, E., and Lim, L. Y. (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm. Res. 21, 344–353.

    Article  PubMed  CAS  Google Scholar 

  31. Ma, Z. and Lim, L. Y. (2003) Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm. Res. 20, 1812–1819.

    Article  PubMed  CAS  Google Scholar 

  32. Serpe, L., Guido, M., Canaparo, R., Muntoni, E., Cavalli, R., Panzanelli, P., Della Pepal, C., Bargoni, A., Mauro, A., Gasco, M. R., Eandi, M., and Zara, G. P. (2006) Intracellular accumulation and cytotoxicity of doxorubicin with different pharmaceutical formulations in human cancer cell lines. J. Nanosci. Nanotechnol. 6, 3062–3069.

    Article  PubMed  CAS  Google Scholar 

  33. Gotte, M., Sofeu Feugaing, D. D., and Kresse, H. (2004) Biglycan is internalized via a chlorpromazine-sensitive route. Cell Mol. Biol. Lett. 9, 475–481.

    PubMed  Google Scholar 

  34. Qaddoumi, M. G., Gukasyan, H. J., Davda, J., Labhasetwar, V., Kim, K. J., and Lee, V. H. (2003) Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol. Vis. 9, 559–568.

    PubMed  CAS  Google Scholar 

  35. Bauer, I. W., Li, S. P., Han, Y. C., Yuan, L., and Yin, M. Z. (2008) Internalization of hydroxyapatite nanoparticles in liver cancer cells. J. Mater. Sci. Mater. Med. 19, 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  36. Manunta, M., Nichols, B. J., Tan, P. H., Sagoo, P., Harper, J., and George, A. J. (2006) Gene delivery by dendrimers operates via different pathways in different cells, but is enhanced by the presence of caveolin. J. Immunol. Methods 314, 134–146.

    Article  PubMed  CAS  Google Scholar 

  37. Corvera, S. and Czech, M. P. (1998) Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 8, 442–446.

    Article  PubMed  CAS  Google Scholar 

  38. Shepherd, P. R., Reaves, B. J., and Davidson, H. W. (1996) Phosphoinositide 3-kinases and membrane traffic. Trends Cell Biol. 6, 92–97.

    Article  PubMed  CAS  Google Scholar 

  39. Nakase, I., Niwa, M., Takeuchi, T., Sonomura, K., Kawabata, N., Koike, Y., Takehashi, M., Tanaka, S., Ueda, K., Simpson, J. C., Jones, A. T., Sugiura, Y., and Futaki, S. (2004) Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10, 1011–1022.

    Article  PubMed  CAS  Google Scholar 

  40. Ui, M., Okada, T., Hazeki, K., and Hazeki, O. (1995) Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem. Sci. 20, 303–307.

    Article  PubMed  CAS  Google Scholar 

  41. Enriquez de Salamanca, A., Diebold, Y., Calonge, M., Garcia-Vazquez, C., Callejo, S., Vila, A., and Alonso, M. J. (2006) Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest. Ophthalmol. Vis. Sci. 47, 1416–1425.

    Article  PubMed  Google Scholar 

  42. Dijkstra, J., Van Galen, M., and Scherphof, G. L. (1984) Effects of ammonium chloride and chloroquine on endocytic uptake of liposomes by Kupffer cells in vitro. Biochim. Biophys. Acta. Mol. Cell Res. 804, 58–67.

    Article  CAS  Google Scholar 

  43. Issa, M. M., Koping-Hoggard, M., Tommeraas, K., Varum, K. M., Christensen, B. E., Strand, S. P., and Artursson, P. (2006) Targeted gene delivery with trisaccharide-substituted chitosan oligomers in vitro and after lung administration in vivo. J. Control Release 115, 103–112.

    Article  PubMed  CAS  Google Scholar 

  44. Hunziker, W., Whitney, J. A., and Mellman, I. (1992) Brefeldin A and the endocytic pathway. Possible implications for membrane traffic and sorting. FEBS Lett. 307, 93–96.

    Article  PubMed  CAS  Google Scholar 

  45. Qaddoumi, M. G., Ueda, H., Yang, J., Davda, J., Labhasetwar, V., and Lee, V. H. (2004) The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm. Res. 21, 641–648.

    Article  PubMed  CAS  Google Scholar 

  46. Goncalves, C., Mennesson, E., Fuchs, R., Gorvel, J. P., Midoux, P., and Pichon, C. (2004) Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Mol. Ther. 10, 373–385.

    Article  PubMed  CAS  Google Scholar 

  47. Hashimoto, M., Morimoto, M., Saimoto, H., Shigemasa, Y., and Sato, T. (2006) Lactosylated chitosan for DNA delivery into hepatocytes: the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes. Bioconj. Chem. 17, 309–316.

    Article  CAS  Google Scholar 

  48. Dijkstra, J., van Galen, M., and Scherphof, G. (1985) Effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of liposomes by Kupffer cells in culture. Biochim. Biophys. Acta 845, 34–42.

    Article  PubMed  CAS  Google Scholar 

  49. Ramge, P., Unger, R. E., Oltrogge, J. B., Zenker, D., Begley, D., Kreuter, J., and Von Briesen, H. (2000) Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur. J. Neurosci. 12, 1931–1940.

    Article  PubMed  CAS  Google Scholar 

  50. Boyd, A. E. III, Bolton, W. E., and Brinkley, B. R. (1982) Microtubules and beta cell function: effect of colchicine on microtubules and insulin secretion in vitro by mouse beta cells. J. Cell Biol. 92, 425–434.

    Article  PubMed  CAS  Google Scholar 

  51. Hu, Y., Xie, J., Tong, Y. W., and Wang, C.-H. (2007) Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J. Control Release 118, 7–17.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang, Z., Huey Lee, S., and Feng, S. S. (2007) Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials 28, 1889–1899.

    Article  PubMed  Google Scholar 

  53. Park, J. S., Han, T. H., Lee, K. Y., Han, S. S., Hwang, J. J., Moon, D. H., Kim, S. Y., and Cho, Y. W. (2006) N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J. Control Release 115, 37–45.

    Article  PubMed  CAS  Google Scholar 

  54. Coester, C., Nayyar, P., and Samuel, J. (2006) In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur. J. Pharm. Biopharm. 62, 306–314.

    Article  PubMed  CAS  Google Scholar 

  55. Richard, J. P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B., and Chernomordik, L. V. (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 280, 15300–15306.

    Article  PubMed  CAS  Google Scholar 

  56. Perumal, O. P., Inapagolla, R., Kannan, S., and Kannan, R. M. (2008) The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29, 3469–3476.

    Article  PubMed  CAS  Google Scholar 

  57. Win, K. Y. and Feng, S. S. (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713–2722.

    Article  PubMed  CAS  Google Scholar 

  58. Russell-Jones, G. J., Arthur, L., and Walker, H. (1999) Vitamin B12-mediated transport of nanoparticles across Caco-2 cells. Int. J. Pharm. 179, 247–255.

    Article  PubMed  CAS  Google Scholar 

  59. Chavanpatil, M. D., Khdair, A., and Panyam, J. (2007) Surfactant-polymer nanoparticles: a novel platform for sustained and enhanced cellular delivery of water-soluble molecules. Pharm. Res. 24, 803–810.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Science and Technology Development Fund (STDF) grant to Noha M. Zaki.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zaki, N.M., Tirelli, N. (2011). Assessment of Nanomaterials Cytotoxicity and Internalization. In: Haycock, J. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 695. Humana Press. https://doi.org/10.1007/978-1-60761-984-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-984-0_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-983-3

  • Online ISBN: 978-1-60761-984-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics