Skip to main content

Methods for Embryoid Body Formation: The Microwell Approach

  • Protocol
  • First Online:
Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 690))

Abstract

Embyroid body (EB) formation is a key step in many embryonic stem cell (ESC) differentiation protocols. The EB mimics the structure of the developing embryo, thereby providing a means of obtaining any cell lineage. Traditionally, the two methods of EB formation are suspension and hanging drop. The suspension method allows ESCs to self-aggregate into EBs in a nonadherent dish. The hanging drop method suspends ESCs on the lid of a dish and EBs form through aggregation at the bottom of the drops. Recently, alternative methods of EB formation have been developed that allow for highly accurate control of EB size and shape, resulting in reproducibly produced homogeneous EBs. This control is potentially useful for directed differentiation, as recent studies have shown that EB size may be a useful determinant of the resulting differentiated cell types. One particular approach to generate homogeneous EBs utilizes nonadhesive microwell structures. The methodology associated with this technique, along with the traditional approaches of suspension and hanging drop, is the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishii, T., Yasuchika, K., Fujii, H., Hoppo, T., Baba, S., Naito, M., et al. (2005) In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes. Exp. Cell. Res. 309, 68–77.

    Article  PubMed  CAS  Google Scholar 

  2. Lavon, N., Yanuka, O., and Benvenisty, N. (2004) Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation 72, 230–238.

    Article  PubMed  CAS  Google Scholar 

  3. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., et al. (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740.

    Article  PubMed  CAS  Google Scholar 

  4. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., et al. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414.

    PubMed  CAS  Google Scholar 

  5. Karp, J. M., Ferreira, L. S., Khademhosseini, A., Kwon, A. H., Yeh, J., and Langer, R. (2006) Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells 24, 835–843.

    Article  PubMed  Google Scholar 

  6. Bielby, R. C., Boccaccini, A. R., Polak, J. M., and Buttery, L. D. (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng. 10, 1518–1525.

    PubMed  CAS  Google Scholar 

  7. Kim, J. H., Auerbach, J. M., Rodriguez-Gomez, J. A., Velasco, I., Gavin, D., Lumelsky, N., et al. (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418, 50–56.

    Article  PubMed  CAS  Google Scholar 

  8. Schuldiner, M., Eiges, R., Eden, A., Yanuka, O., Itskovitz-Eldor, J., Goldstein, R. S., et al. (2001) Induced neuronal differentiation of human embryonic stem cells. Brain Res. 913, 201–205.

    Article  PubMed  CAS  Google Scholar 

  9. Desbaillets, I., Ziegler, U., Groscurth, P., and Gassmann, M. (2000) Embryoid bodies: an in vitro model of mouse embryogenesis. Exp. Physiol. 85, 645–651.

    Article  PubMed  CAS  Google Scholar 

  10. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., et al. (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol. Med. 6, 88–95.

    PubMed  CAS  Google Scholar 

  11. Hamazaki, T., Oka, M., Yamanaka, S., and Terada, N. (2004) Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J. Cell. Sci. 117, 5681–5686.

    Article  PubMed  CAS  Google Scholar 

  12. Keller, G. M. (1995) In vitro differentiation of embryonic stem cells. Curr. Opin. Cell. Biol. 7, 862–869.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, A. G. (2001) Embryo-derived stem cells: of mice and men. Annu. Rev. Cell. Dev. Biol. 17, 435–462.

    Article  PubMed  CAS  Google Scholar 

  14. Nakayama, T., Momoki-Soga, T., Yamaguchi, K., and Inoue, N. (2004) Efficient production of neural stem cells and neurons from embryonic stem cells. Neuroreport 15, 487–491.

    Article  PubMed  Google Scholar 

  15. Xu, C., Police, S., Rao, N., and Carpenter, M. K. (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501–508.

    Article  PubMed  CAS  Google Scholar 

  16. Bauwens, C. L., Peerani, R., Niebruegge, S., Woodhouse, K. A., Kumacheva, E., Husain, M., et al. (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26, 2300–2310.

    Article  PubMed  Google Scholar 

  17. Park, J., Cho, C. H., Parashurama, N., Li, Y., Berthiaume, F., Toner, M., et al. (2007) Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip 7, 1018–1028.

    Article  PubMed  CAS  Google Scholar 

  18. Ng, E. S., Davis, R. P., Azzola, L., Stanley, E. G., and Elefanty, A. G. (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106, 1601–1603.

    Article  PubMed  CAS  Google Scholar 

  19. Martin, G. R. and Evans, M. J. (1975) Differentiation of clonal lines of teratocarcinoma cells: formation on embryoid bodies in vitro. Proc. Natl. Acad. Sci. U.S.A. 72, 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  20. Dang, S. M., Kyba, M., Perlingeiro, R., Daley, G. Q., and Zandstra, P. W. (2002) Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol. Bioeng. 78, 442–453.

    Article  PubMed  CAS  Google Scholar 

  21. Torisawa, Y. S., Chueh, B. H., Huh, D., Ramamurthy, R., Roth, T. M., Barald, K. F., et al. (2007) Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab Chip. 7, 770–776.

    Article  PubMed  CAS  Google Scholar 

  22. Schroeder, M., Niebruegge, S., Werner, A., Willbold, E., Burg, M., Ruediger, M., et al. (2005) Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process ­control. Biotechnol. Bioeng. 92, 920–933.

    Article  PubMed  CAS  Google Scholar 

  23. zur Nieden, N. I., Cormier, J. T., Rancourt, D. E., and Kallos, M. S. (2007) Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J. Biotechnol. 129, 421–432.

    Article  PubMed  Google Scholar 

  24. Karp, J. M., Yeh, J., Eng, G., Fukuda, J., Blumling, J., Suh, K. Y., et al. (2007) Controlling size, shape, and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip. 7, 786–794.

    Article  PubMed  CAS  Google Scholar 

  25. Moeller, H. C., Mian, M. K., Shrivastava, S., Chung, B. G., Khademhosseini, A. (2008) A microwell array system for stem cell culture. Biomaterials 29, 752–763.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Karp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Spelke, D.P., Ortmann, D., Khademhosseini, A., Ferreira, L., Karp, J.M. (2011). Methods for Embryoid Body Formation: The Microwell Approach. In: Nieden, N. (eds) Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. Methods in Molecular Biology, vol 690. Humana Press. https://doi.org/10.1007/978-1-60761-962-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-962-8_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-961-1

  • Online ISBN: 978-1-60761-962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics