Skip to main content

Habit Formation and Compulsion

  • Protocol
  • First Online:
Animal Models of Drug Addiction

Part of the book series: Neuromethods ((NM,volume 53))

Abstract

Our increasing understanding of the psychological mechanisms involved in the transition from controlled to habitual compulsive drug use, the hallmark of drug addiction, relies on animal models in which the underlying behavioral construct reflects some of the main features of drug addiction in humans, such as foraging for the drug during extended periods of time, habitual drug seeking behavior and drug seeking or drug taking behaviors that are maintained despite adverse consequences. We have placed great emphasis on the development of behavioral procedures whereby animals not only self-administer drugs, but pathologically seek and take drugs in a way that resembles the clinical condition in human drug addicts. Thus, over the last 10 years we have developed models in rats that specifically address the development of habitual drug seeking behavior, compulsive cocaine seeking and taking behavior, and even addiction-like behavior. In this chapter, we review the behavioral procedures, namely second-order schedules of reinforcement, two-link heterogeneous chained schedules of reinforcement and the “three addiction-like behavioral criteria selection procedure” that we have used in rats to model habitual drug seeking behavior, compulsive drug seeking and taking behavior and addiction-like behavior. Although not yet widely adopted, these models have already contributed to the identification of some neurobiological and psychological mechanisms involved in the vulnerability to drug addiction and the transition from controlled to compulsive drug use, thereby emphasizing their great heuristic value in attempts to understand drug addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kusayama T, Watanabe S (2000) Reinforcing effects of methamphetamine in planarians. NeuroReport 11:2511–2513

    PubMed  CAS  Google Scholar 

  2. Li H, Chaney S, Roberts IJ, Forte M, Hirsh J (2000) Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr Biol 10:211–214

    PubMed  CAS  Google Scholar 

  3. Wolf F, Heberlein U (2002) Invertebrate models of drug abuse. J Neurobiol 54:161–178

    CAS  Google Scholar 

  4. Carney JM, Landrum RW, Cheng MS, Seale TW (1991) Establishment of chronic intravenous drug self-administration in the C57BL/6J mouse. NeuroReport 2:477–480

    PubMed  CAS  Google Scholar 

  5. Grahame NJ, Phillips TJ, Burkhart-Kasch S, Cunningham CL (1995) Intravenous cocaine self-administration in the C57BL/6J mouse. Pharmacol Biochem Behav 51:827–834

    PubMed  CAS  Google Scholar 

  6. Highfield DA, Mead AN, Grimm JW, Rocha BA, Shaham Y (2002) Reinstatement of cocaine seeking in 129X1/SvJ mice: effects of cocaine priming, cocaine cues and food deprivation. Psychopharmacology (Berl) 161:417–424

    CAS  Google Scholar 

  7. Rocha BA, Scearce-Levie K, Lucas JJ et al (1998) Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393:175–178

    PubMed  CAS  Google Scholar 

  8. van der Veen R, Koehl M, Abrous DN, de Kloet ER, Piazza PV, Deroche-Gamonet V (2008) Maternal environment influences cocaine intake in adulthood in a genotype-dependent manner. PLoS ONE 3:e2245

    PubMed  Google Scholar 

  9. Ettenberg A, Pettit HO, Bloom FE, Koob GF (1982) Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology (Berl) 78(3):204–209

    CAS  Google Scholar 

  10. Gerrits MA, van Ree JM (1995) Assessment of motivational aspects involved in initiation of cocaine and heroin self-administration in rats. Pharmacol Biochem Behav 52:35–42

    PubMed  CAS  Google Scholar 

  11. Koob G, Pettit HO, Ettenberg A, Bloom FE (1984) Effects of opiate antagonists and their quaternary derivatives on heroin self-administration in the rat. J Pharmacol Exp Ther 229:481–486

    PubMed  CAS  Google Scholar 

  12. Stewart J (1983) Conditioned and unconditioned drug effects in relapse to opiate and stimulant drug self-adminstration. Prog Neuropsychopharmacol Biol Psychiatry 7:591–597

    PubMed  CAS  Google Scholar 

  13. Weeks JR (1962) Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science 138:143–144

    PubMed  CAS  Google Scholar 

  14. Risner ME, Goldberg SR (1983) A comparison of nicotine and cocaine self-administration in the dog: fixed-ratio and progressive-ratio schedules of intravenous drug infusion. J Pharmacol Exp Ther 224:319–326

    PubMed  CAS  Google Scholar 

  15. Goldberg SR (1973) Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey. J Pharmacol Exp Ther 186:18–30

    PubMed  CAS  Google Scholar 

  16. Goldberg SR, Spealman RD, Goldberg DM (1981) Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 214(4520):573–575

    PubMed  CAS  Google Scholar 

  17. Goldberg SR, Kelleher RT, Morse WH (1975) Second-order schedules of drug injection. Fed Proc 34:1771–1776

    PubMed  CAS  Google Scholar 

  18. Goldberg SR, Morse WH, Goldberg DM (1976) Behavior maintained under a second-order schedule by intramuscular injection of morphine or cocaine in rhesus monkeys. J Pharmacol Exp Ther 199:278–286

    PubMed  CAS  Google Scholar 

  19. Nader M, Morgan D, Gage H et al (2006) PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9:1050–1056

    PubMed  CAS  Google Scholar 

  20. Nader MA, Czoty PW (2005) PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation. Am J Psychiatry 162:1473–1482

    PubMed  Google Scholar 

  21. Porrino L (2004) The expanding effects of cocaine: studies in a nonhuman primate model of cocaine self-administration. Neurosci Biobehav Rev 27:813–820

    PubMed  CAS  Google Scholar 

  22. Nestler EJ (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem 78:637–647

    PubMed  CAS  Google Scholar 

  23. Pierce R, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238

    PubMed  CAS  Google Scholar 

  24. Pierce R, Kalivas P (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25(2):192–216

    PubMed  CAS  Google Scholar 

  25. Wise RA, Bozarth MA (1981) Brain substrates for reinforcement and drug self-administration. Prog Neuropsychopharmacol 5:467–474

    PubMed  CAS  Google Scholar 

  26. Wise RA, Bozarth MA (1985) Brain mechanisms of drug reward and euphoria. Psychiatr Med 3:445–460

    PubMed  CAS  Google Scholar 

  27. Wise RA (2005) Forebrain substrates of reward and motivation. J Comp Neurol 493:115–121

    PubMed  CAS  Google Scholar 

  28. Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6(2):243–251

    PubMed  CAS  Google Scholar 

  29. Nestler EJ (2005) The neurobiology of cocaine addiction. Sci Pract Perspect 3:4–10

    PubMed  Google Scholar 

  30. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449

    PubMed  CAS  Google Scholar 

  31. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  32. Stewart J, De Wit H (1987) Reinstatement of drug-taking behavior as a method of assessing incentive motivational properties of drugs. In: Bozarth MA (ed) Methods of assessing the reinforcing properties of abused drugs. Springer-Verlag, New York, pp 211–227

    Google Scholar 

  33. Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Rev 33:13–33

    PubMed  CAS  Google Scholar 

  34. Grimm JW, Hope BT, Wise RA, Shaham Y (2001) Incubation of cocaine craving after withdrawal. Nature 412:141–142

    PubMed  CAS  Google Scholar 

  35. Bossert JM, Liu SY, LU L, Shaham Y (2004) A role of ventral tegmental area glutamate in contextual cue-induced relapse to heroin seeking. J Neurosci 24(47):10726–10730

    PubMed  CAS  Google Scholar 

  36. Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci 26(13):3584–3588

    PubMed  CAS  Google Scholar 

  37. Ahmed SH, Koob G (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387):298–300

    PubMed  CAS  Google Scholar 

  38. Ahmed SH, Walker JR, Koob GF (2000) Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology 22(4):413–421

    PubMed  CAS  Google Scholar 

  39. Pelloux Y, Everitt BJ, Dickinson A (2007) Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology (Berl) 194:127–137

    CAS  Google Scholar 

  40. Vanderschuren L, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305(5685):1017–1019

    PubMed  CAS  Google Scholar 

  41. Arroyo M, Markou A, Robbins TW, Everitt BJ (1998) Acquisition, maintenance and reinstatement of intravenous cocaine self-administration under a second-order schedule of reinforcement in rats: effects of conditioned cues and continuous access to cocaine. Psychopharmacology (Berl) 140:331–344

    CAS  Google Scholar 

  42. Everitt BJ, Robbins TW (2000) Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behavior. Psychopharmacology 153:17–30

    PubMed  CAS  Google Scholar 

  43. Olmstead M, Parkinson J, Miles F, Everitt BJ, Dickinson A (2000) Cocaine-seeking by rats: regulation, reinforcement and activation. Psychopharmacology 152:123–131

    PubMed  CAS  Google Scholar 

  44. Deroche-Gamonet V, Belin D, Piazza P (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    PubMed  CAS  Google Scholar 

  45. Belin D, Mar A, Dalley J, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:1352–1355

    PubMed  CAS  Google Scholar 

  46. Belin D, Balado E, Piazza PV, Deroche-Gamonet V (2009) Pattern of intake and drug craving predict the development of cocaine addiction-like behavior in rats. Biol Psychiatry 65:863–868

    PubMed  CAS  Google Scholar 

  47. Anthony JC, Warner LA, Kessler RC (1994) Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National comorbidity Survey. Exp Clin Psychopharmacol 2:244

    Google Scholar 

  48. Berke J, Hyman S (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25(3):515–532

    PubMed  CAS  Google Scholar 

  49. O’Brien CP, Mclellan A (1996) Myths about the treatment of addiction. Lancet 347:237–240

    PubMed  Google Scholar 

  50. Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570

    PubMed  CAS  Google Scholar 

  51. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363(1507):3125–3135

    PubMed  Google Scholar 

  52. Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–390

    PubMed  CAS  Google Scholar 

  53. Baumeister RF, Heatherton TF, Tice DM (1994) Losing Control: How and Why People Fail at Self-Regulation. Academic, San Diego

    Google Scholar 

  54. Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behavior. Brain Res Rev 36(2–3):129–138

    PubMed  CAS  Google Scholar 

  55. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    PubMed  CAS  Google Scholar 

  56. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ (2008) Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199(1):89–102

    PubMed  Google Scholar 

  57. Ahmed SH, Koob G (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology 146:303–312

    PubMed  CAS  Google Scholar 

  58. Belin D, Everitt BJ (2008) Cocaine-Seeking Habits Depend upon Dopamine-Dependent Serial Connectivity Linking the Ventral with the Dorsal Striatum. Neuron 57:432–441

    PubMed  CAS  Google Scholar 

  59. Ito R, Dalley J, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253

    PubMed  CAS  Google Scholar 

  60. Vanderschuren L, Everitt BJ (2005) Involvement of the Dorsal Striatum in Cue-Controlled Cocaine Seeking. J Neurosci 25:8665–8670

    PubMed  CAS  Google Scholar 

  61. Tiffany ST (1990) A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol Rev 97:147–168

    PubMed  CAS  Google Scholar 

  62. Fujii S, Gärling T, Kitamura R (2001) Changes in drivers’ perceptions and use of public transport during a freeway closure; effects of temporary structural change on cooperation in a real life social dilemma. Environ Behav 33:796–808

    Google Scholar 

  63. Adams C, Dickinson A (1981) Instrumental responding following reinforcer devaluation. Q J Exp Psychol Comp Physiol Psychol 33:109–121

    Google Scholar 

  64. Dickinson A (1985) Actions and habits: the development of behavioral autonomy. Philos Trans R Soc Lond Ser B 308(1135):67–78

    Google Scholar 

  65. Coutureau E (2003) Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behav Brain Res 146:167–174

    PubMed  Google Scholar 

  66. Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex 13(4):400–408

    PubMed  Google Scholar 

  67. Yin H, Knowlton B (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    PubMed  CAS  Google Scholar 

  68. Yin H, Knowlton B, Balleine B (2005) Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur J Neurosci 22:505–512

    PubMed  Google Scholar 

  69. Yin H, Knowlton B, Balleine B (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19(1):181–189

    PubMed  Google Scholar 

  70. Yin H, Knowlton B, Balleine B (2006) Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behav Brain Res 166:189–196

    PubMed  Google Scholar 

  71. Faure A, Haberland U, Condé F, El Massioui N (2005) Lesion to the Nigrostriatal Dopamine System Disrupts Stimulus-Response Habit Formation. J Neurosci 25:2771–2780

    PubMed  CAS  Google Scholar 

  72. Dickinson A, Wood N, Smith J (2002) Alcohol seeking by rats: Action or habit? Q J Exp Psychol B 55:331–348

    PubMed  Google Scholar 

  73. Miles F, Everitt BJ, Dickinson A (2003) Oral cocaine seeking by rats: Action or habit? Behav Neurosci 117:927–938

    PubMed  Google Scholar 

  74. Paulson PE, Camp DM, Robinson T (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology (Berl) 103:480–492

    CAS  Google Scholar 

  75. Robinson T, Berridge K (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18(3):247–291

    PubMed  CAS  Google Scholar 

  76. Gerdeman G (2003) It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 26:184–192

    PubMed  CAS  Google Scholar 

  77. Nelson A, and Killcross S (2006) Amphetamine Exposure Enhances Habit Formation. J Neurosci 26:3805–3812

    PubMed  CAS  Google Scholar 

  78. Nordquist R, Voorn P, Demooijvanmalsen J, Joosten R, Pennartz C, Vanderschuren L (2007) Augmented reinforcer value and accelerated habit formation after repeated amphetamine treatment. Eur Neuropsychopharmacol 17:532–540

    PubMed  CAS  Google Scholar 

  79. Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci 19:1997–2002

    PubMed  Google Scholar 

  80. Schoenbaum G (2004) Cocaine Makes Actions Insensitive to Outcomes but not Extinction: Implications for Altered Orbitofrontal-Amygdalar Function. Cereb Cortex 15:1162–1169

    PubMed  Google Scholar 

  81. Henningfield JE, Nemeth-Coslett R, Katz JL, Goldberg SR (1987) Intravenous cocaine self-administration by human volunteers: second-order schedules of reinforcement. NIDA Res Monogr 76:266–273

    PubMed  CAS  Google Scholar 

  82. Olmstead M, Lafond M, Everitt BJ, Dickinson A (2001) Cocaine seeking by rats is a goal-directed action. Behav Neurosci 115:394–402

    PubMed  CAS  Google Scholar 

  83. Corbit L, Balleine B (2003) Instrumental and Pavlovian incentive processes have dissociable effects on components of a heterogeneous instrumental chain. J Exp Psychol Anim Behav Process 29:99–106

    PubMed  Google Scholar 

  84. Czoty P, Reboussin B, Calhoun T, Nader S, Nader M (2007) Long-term cocaine self-administration under fixed–ratio and second-order schedules in monkeys. Psychopharmacology 191:287–295

    PubMed  CAS  Google Scholar 

  85. Goldberg SR, Kelleher RT, Goldberg DM (1981) Fixed-ratio responding under second-order schedules of food presentation or cocaine injection. J Pharmacol Exp Ther 218:271–281

    PubMed  CAS  Google Scholar 

  86. Goldberg SR, Spealman RD, Kelleher RT (1979) Enhancement of drug-seeking behavior by environmental stimuli associated with cocaine or morphine injections. Neurophar­macology 18:1015–1017

    PubMed  CAS  Google Scholar 

  87. Schindler CW, Panlilio LV, Goldberg SR (2002) Second-order schedules of drug self-administration in animals. Psychopharmacology (Berl) 163:327–344

    CAS  Google Scholar 

  88. Parkinson JA, Roberts AC, Everitt BJ, Di Ciano P (2005) Acquisition of instrumental conditioned reinforcement is resistant to the devaluation of the unconditioned stimulus. Q J Exp Psychol B 58:19–30

    PubMed  CAS  Google Scholar 

  89. Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397

    PubMed  CAS  Google Scholar 

  90. Lee J (2006) Reconsolidation and Extinction of Conditioned Fear: Inhibition and Potentiation. J Neurosci 26:10051–10056

    PubMed  CAS  Google Scholar 

  91. Burns LH, Robbins T, Everitt B (1993) Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine. Behav Brain Res 55:167–183

    PubMed  CAS  Google Scholar 

  92. Cador M, Robbins T, Everitt B (1989) Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience 30(1):77–86

    PubMed  CAS  Google Scholar 

  93. Everitt BJ, Cador M, Robbins TW (1989) Interactions between the amygdala and ventral striatum in stimulus-reward associations: studies using a second-order schedule of sexual reinforcement. Neuroscience 30:63–75

    PubMed  CAS  Google Scholar 

  94. Di Ciano P, Everitt BJ (2004) Direct Interactions between the Basolateral Amygdala and Nucleus Accumbens Core Underlie Cocaine-Seeking Behavior by Rats. J Neurosci 24:7167–7173

    PubMed  Google Scholar 

  95. Everitt BJ, Hutcheson D, Ersche K, Pelloux Y, Dalley JW, Robbins TW (2007) The Orbital Prefrontal Cortex and Drug Addiction in Laboratory Animals and Humans. Ann NY Acad Sci 1121:576–597

    PubMed  CAS  Google Scholar 

  96. Hutcheson DM, Everitt BJ (2003) The effects of selective orbitofrontal cortex lesions on the acquisition and performance of cue-controlled cocaine seeking in rats. Ann NY Acad Sci 1003:410–411

    PubMed  Google Scholar 

  97. Di Ciano P, Everitt BJ (2004) Contribution of the ventral tegmental area to cocaine-seeking maintained by a drug-paired conditioned stimulus in rats. Eur J Neurosci 19:1661–1667

    PubMed  Google Scholar 

  98. Haber S, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382

    PubMed  CAS  Google Scholar 

  99. Ikemoto S (2007) Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res Rev 56:27–78

    PubMed  CAS  Google Scholar 

  100. Haber S (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    PubMed  Google Scholar 

  101. Goodman WK, Price LH, Rasmussen SA et al (1989) The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Arch Gen Psychiatry 46:1006–1011

    PubMed  CAS  Google Scholar 

  102. Anton RF (2000) Obsessive-compulsive aspects of craving: development of the Obsessive Compulsive Drinking Scale. Addiction 95(Suppl 2):S211–S217

    PubMed  Google Scholar 

  103. Joel D, Klavir O (2006) The Effects of Temporary Inactivation of the Orbital Cortex in the Signal Attenuation Rat Model of Obsessive Compulsive Disorder. Behav Neurosci 120:976–983

    PubMed  Google Scholar 

  104. Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168:3–20

    PubMed  CAS  Google Scholar 

  105. O’Brien CP, Childress AR, Arndt IO, Mclellan A, Woody GE, Maany I (1988) Pharmacological and behavioral treatments of cocaine dependence: controlled studies. J Clin Psychiatry 49(Suppl):17–22

    PubMed  Google Scholar 

  106. Beech HR, Vaughan ME (1978) Behavioral treatment of obsessional states. Wiley, Chichester

    Google Scholar 

  107. Matthews AM, Gelder MG, Johnston DW (1981) Agoraphobia: Nature and treatment. Guilford Press, New York

    Google Scholar 

  108. McLellan AT, Childress AR, Ehrman R, O’Brien CP, Pashko S (1986) Extinguishing conditioned responses during opiate dependence treatment turning laboratory findings into clinical procedures. J Subst Abuse Treat 3:33–40

    PubMed  CAS  Google Scholar 

  109. Raw M, Russell MA (1980) Rapid smoking, cue exposure and support in the modification of smoking. Behav Res Ther 18:363–372

    PubMed  CAS  Google Scholar 

  110. Di Ciano P, Everitt BJ (2004) Conditioned reinforcing properties of stimuli paired with self-administered cocaine, heroin or sucrose: implications for the persistence of addictive behavior. Neuropharmacology 47(1):202–213

    PubMed  Google Scholar 

  111. Burke KA, Franz TM, Gugsa N, Schoenbaum G (2006) Prior cocaine exposure disrupts extinction of fear conditioning. Learn Mem 13:416–421

    PubMed  CAS  Google Scholar 

  112. Waldorf D, Reinarman C, Murphy S (1991) Cocaine changes: the experience of using and quitting. Temple University Press, Philadelphia

    Google Scholar 

  113. Burman BD (1997) The nonreimbursed patient. Rehab Manag 10:48–51

    PubMed  CAS  Google Scholar 

  114. Cunningham JA (2000) Remissions from drug dependence: is treatment a prerequisite? Drug Alcohol Depend 59:211–213

    PubMed  CAS  Google Scholar 

  115. Cunningham JA, Lin E, Ross HE, Walsh GW (2000) Factors associated with untreated remissions from alcohol abuse or dependence. Addict Behav 25:317–321

    PubMed  CAS  Google Scholar 

  116. Klingemann HK (1991) The motivation for change from problem alcohol and heroin use. Br J Addict 86:727–744

    PubMed  CAS  Google Scholar 

  117. Geyer MA, Markou A (1995) Animal models in psychatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychoparmacology: the fourth generation of progress. Raven, New York, pp 787–798

    Google Scholar 

  118. Geyer MA, Markou A (2002) The role of preclinical models in the development of psychotropic drugs. In: Kenneth LD, Dennis C, Joseph TC, Charles N (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Philadelphia, pp 446–457

    Google Scholar 

  119. Fuller RK, Branchey L, Brightwell DR et al (1986) Disulfiram treatment of alcoholism. A Veterans Administration cooperative study. J Am Med Assoc 256:1449–1455

    CAS  Google Scholar 

  120. Heyne A (1996) The development of opiate addiction in the rat. Pharmacol Biochem Behav 53:11–25

    PubMed  CAS  Google Scholar 

  121. Heyne A, Wolffgramm J (1998) The development of addiction to d-amphetamine in an animal model: same principles as for alcohol and opiate. Psychopharmacology (Berl) 140:510–518

    CAS  Google Scholar 

  122. Spanagel R, Holter SM (1999) Long-term alcohol self-administration with repeated alcohol deprivation phases: an animal model of alcoholism? Alcohol Alcohol 34:231–243

    PubMed  CAS  Google Scholar 

  123. Pearce JM, Dickinson A (1975) Pavlovian counterconditioning: changing the suppressive properties of shock by association with food. J Exp Psychol Anim Behav Process 1:170–177

    PubMed  CAS  Google Scholar 

  124. Seymour B, Singer T, Dolan R (2007) The neurobiology of punishment. Nat Rev Neurosci 8:300–311

    PubMed  CAS  Google Scholar 

  125. Azrin NH, Holz WC (1966) Punishment. In: Honig WA (ed) Operant behavior: areas of research and application. Academic, New York, pp 380–447

    Google Scholar 

  126. Cooper A, Barnea-Ygael N, Levy D, Shaham Y, Zangen A (2007) A conflict rat model of cue-induced relapse to cocaine seeking. Psychopharmacology (Berl) 194:117–125

    CAS  Google Scholar 

  127. Smith SG, Davis WM (1974) Punishment of amphetamine and morphine self-administration behavior. Psychol Rec 24:477–480

    Google Scholar 

  128. Panlilio LV, Thorndike EB, Schindler CW (2003) Reinstatement of punishment-suppressed opioid self-administration in rats: an alternative model of relapse to drug abuse. Psychopharmacology (Berl) 168:229–235

    CAS  Google Scholar 

  129. Hughes JR (2002) Is extinction in animals the same as abstinence in humans? Addiction 97:1219

    PubMed  Google Scholar 

  130. Marlatt GA (1996) Lest taxonomy become taxidermy: a comment on the relapse replication and extension project. Addiction 91(Suppl):S147–S153

    PubMed  Google Scholar 

  131. Bechara A, Dolan S, Denburg N, Hindes A, Anderson SW, Nathan PE (2001) Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39:376–389

    PubMed  CAS  Google Scholar 

  132. Grant S, Contoreggi C, London ED (2000) Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia 38:1180–1187

    PubMed  CAS  Google Scholar 

  133. Jentsch JD, Elsworth JD, Redmond DEJ, Roth RH (1997) Phencyclidine increases forebrain monoamine metabolism in rats and monkeys: modulation by the isomers of HA966. J Neurosci 17:1769–1775

    PubMed  CAS  Google Scholar 

  134. Jentsch JD, Sanchez D, Elsworth JD, Roth RH (2008) Clonidine and guanfacine attenuate phencyclidine-induced dopamine overflow in rat prefrontal cortex: mediating influence of the alpha-2A adrenoceptor subtype. Brain Res 1246:41–46

    PubMed  CAS  Google Scholar 

  135. Jentsch JD, Taylor JR (2001) Impaired inhibition of conditioned responses produced by subchronic administration of phencyclidine to rats. Neuropsychopharmacology 24:66–74

    PubMed  CAS  Google Scholar 

  136. Lee B, Groman S, London ED, Jentsch JD (2007) Dopamine D2/D3 receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 32:2125–2134

    PubMed  CAS  Google Scholar 

  137. Rogers RD, Everitt B, Baldacchino A, Blackstaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20(4):322–339

    PubMed  CAS  Google Scholar 

  138. Schoenbaum G, Roesch M, Stalnaker T (2006) Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 29:116–124

    PubMed  CAS  Google Scholar 

  139. Ahmed SH (2005) Imbalance between drug and non-drug reward availability: a major risk factor for addiction. Eur J Pharmacol 526:9–20

    PubMed  CAS  Google Scholar 

  140. Prendergast M, Podus D, Finney J, Greenwell L, Roll J (2006) Contingency management for treatment of substance use disorders: a meta-analysis. Addiction 101:1546–1560

    PubMed  Google Scholar 

  141. Lenoir M, Serre F, Cantin L, Ahmed S, Baunez B (2007) Intense sweetness surpasses cocaine reward. PLoS ONE 2:e698

    PubMed  Google Scholar 

  142. Campbell UC, Carroll M (2000) Reduction of drug self-administration by an alternative non-drug reinforcer in rhesus monkeys: magnitude and temporal effects. Psychopharmacology (Berl) 147(4):418–425

    CAS  Google Scholar 

  143. Cosgrove KP, Hunter RG, Carroll ME (2002) Wheel-running attenuates intravenous cocaine self-administration in rats: sex differences. Pharmacol Biochem Behav 73:663–671

    PubMed  CAS  Google Scholar 

  144. Kanarek RB, Marks-Kaufman R, D’Anci KE, Przypek J (1995) Exercise attenuates oral intake of amphetamine in rats. Pharmacol Biochem Behav 51:725–729

    PubMed  CAS  Google Scholar 

  145. Klebaur JE, Phillips SB, Kelly TH, Bardo M (2001) Exposure to novel environmental ­stimuli decreases amphetamine self-administration in rats. Exp Clin Psychopharmacol 9:372–379

    PubMed  CAS  Google Scholar 

  146. Mattson BJ, Williams S, Rosenblatt JS, Morrell JI (2001) Comparison of two positive reinforcing stimuli: pups and cocaine throughout the postpartum period. Behav Neurosci 115:683–694

    PubMed  CAS  Google Scholar 

  147. Spanagel R, Holter SM, Allingham K, Landgraf R, Zieglgansberger W (1996) Acamprosate and alcohol: I. Effects on alcohol intake following alcohol deprivation in the rat. Eur J Pharmacol 305:39–44

    PubMed  CAS  Google Scholar 

  148. Insel TR, Mos J, Oliviere1e B (1994) 10 animal models of obsessive compulsive disorder: a review. Current insights in obsessive compulsive disorder 117.

    Google Scholar 

  149. Robbins TW, Koob G (1980) Selective disruption of displacement behavior by lesions of the mesolimbic dopamine system. Nature 285(5764):409–412

    PubMed  CAS  Google Scholar 

  150. Dunham PJ (1971) Punishment: method and theory. Psychological Review 78(1):58–70

    Google Scholar 

  151. Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ (2009) High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol Psychiatry 65(10):851–856

    PubMed  CAS  Google Scholar 

  152. Kreek M, Laforge K, Butelman E (2002) Pharmacotherapy of addictions. Nat Rev Drug Discov 1:710–726

    PubMed  CAS  Google Scholar 

  153. Roques B (1999) La dangerosité des drogues: rapport au secrétariat d’Etat à la santé. In: Jacob O (ed) La documentation française. Paris, France, p 316

    Google Scholar 

  154. Robinson T, Berridge K (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):91–117

    Google Scholar 

  155. Robinson T, Berridge K (2001) Incentive-sensitization and addiction. Addiction 96(1):103–114

    PubMed  CAS  Google Scholar 

  156. Koob G, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    PubMed  CAS  Google Scholar 

  157. Koob G, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8:1442–1444

    PubMed  CAS  Google Scholar 

  158. Cacciola J, Alterman A, O’Brien CP, Mclellan A (1997) The Addiction Severity Index in clinical efficacy trials of medications for cocaine dependence. NIDA Res Monogr 175:182–191

    PubMed  CAS  Google Scholar 

  159. Kampman KM, Volpicelli JR, McGinnis DE et al (1998) Reliability and validity of the cocaine selective severity assessment. Addict Behav 23:449–461

    PubMed  CAS  Google Scholar 

  160. Mclellan A, Kushner H, Metzger D, Peters R (1992) The fifth edition of the addiction severity index. J Subst Abuse Treat 9(3):199–213

    PubMed  CAS  Google Scholar 

  161. Rikoon S, Cacciola J, Carise D, Alterman A, Mclellan A (2006) Predicting DSM-IV dependence diagnoses from Addiction Severity Index composite scores. J Subst Abuse Treat 31:17–24

    PubMed  Google Scholar 

  162. Thomas McLellan A, Cacciola J, Alterman A, Rikoon S, Carise D (2006) The Addiction Severity Index at 25: origins, contributions and transitions. Am J Addict 15:113–124

    PubMed  Google Scholar 

  163. Stewart J, De Wit H (1987) Reinstatement of drug taking behavior as a method of assessing incentive motivational properties of drugs. In: Bozarth MA (ed) Assessing drug reinforcement. Springer, New York

    Google Scholar 

  164. Gawin FH (1989) Cocaine abuse and addiction. J Fam Pract 29:193–197

    PubMed  CAS  Google Scholar 

  165. Gawin FH (1991) Cocaine addiction: psychology and neurophysiology. Science 251:1580–1586

    PubMed  CAS  Google Scholar 

  166. Piazza PV, Deminiere JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    PubMed  CAS  Google Scholar 

  167. Piazza PV, Deminiere JM, Maccari S, Mormede P, Le Moal M, Simon H (1990) Individual reactivity to novelty predicts probability of amphetamine self-administration. Behav Pharmacol 1:339–345

    PubMed  Google Scholar 

  168. Bari A, Dalley JW, Robbins TW (2008) The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nature Protocols 3:759–767

    PubMed  CAS  Google Scholar 

  169. Robbins TW (2002) The 5-choice serial reaction time task: behavioral pharmacology and functional neurochemistry. Psychopharma-cology 163:362–380

    PubMed  CAS  Google Scholar 

  170. Dalley JW, Fryer T, Brichard L et al (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270

    PubMed  CAS  Google Scholar 

  171. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    PubMed  CAS  Google Scholar 

  172. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    PubMed  Google Scholar 

  173. Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiat 157:1789–1798

    PubMed  CAS  Google Scholar 

  174. Volkow N, Wang GJ, Telang F, Fowler JS et al (2006) Cocaine Cues and Dopamine in Dorsal Striatum: Mechanism of Craving in Cocaine Addiction. J Neurosci 26:6583–6588

    PubMed  CAS  Google Scholar 

  175. Kristiansen LV, Bannon MJ, Meador-Woodruff J (2009) Expression of transcripts for myelin related genes in postmortem brain from cocaine abusers. Neurochem Res 34:46–54

    PubMed  CAS  Google Scholar 

  176. Wolffgramm J, Heyne A (1995) From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav Brain Res 70:77–94

    PubMed  CAS  Google Scholar 

  177. Bolla KI, Eldreth DA, London ED et al (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19:1085–1094

    PubMed  CAS  Google Scholar 

  178. Garavan H, Hester R (2007) The role of cognitive control in cocaine dependence. Neuropsychol Rev 17:337–345

    PubMed  Google Scholar 

  179. Porrino L, Lyons D (2000) Orbital and medial prefrontal cortex and psychostimulant abuse: studies in animal models. Cereb Cortex 10:326–333

    PubMed  CAS  Google Scholar 

  180. Porrino L, Smith HR, Nader MA, Beveridge TJ (2007) The effects of cocaine: a shifting target over the course of addiction. Prog Neuropsychopharmacol Biol Psychiatry 31:1593–1600

    PubMed  CAS  Google Scholar 

  181. Calu D, Stalnaker T, Franz T, Singh T, Shaham Y, Schoenbaum G (2007) Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn Mem 14:325–328

    PubMed  Google Scholar 

  182. Olausson P, Jentsch J, Krueger D, Tronson N, Nairn A, Taylor J (2007) Orbitofrontal cortex and cognitive-motivational impairments in psychostimulant addiction: evidence from experiments in the non-human primate. Ann NY Acad Sci 1121:610–638

    PubMed  CAS  Google Scholar 

  183. Volkow N, Fowler J (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10(3):318–325

    PubMed  CAS  Google Scholar 

  184. McNamara R, Dalley JW, Robbins TW, Everitt BJ & Belin D Trait-like impulsivity does not predict escalation of heroin self-administration in the rat. Psychopharmacology (2010). In Press

    Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Medical Research Council and Wellcome Trust and was conducted within the Behavioral and Clinical Neuroscience Institute in the University of Cambridge.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Belin, D., Economidou, D., Pelloux, Y., Everitt, B.J. (2011). Habit Formation and Compulsion. In: Olmstead, M. (eds) Animal Models of Drug Addiction. Neuromethods, vol 53. Humana Press. https://doi.org/10.1007/978-1-60761-934-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-934-5_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-933-8

  • Online ISBN: 978-1-60761-934-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics