Skip to main content

Craving

  • Protocol
  • First Online:
Animal Models of Drug Addiction

Part of the book series: Neuromethods ((NM,volume 53))

Abstract

The thesis of this chapter is that the unconscious (basic) craving process, consisting of activation within limbic incentive motivation and memory systems, is ultimately responsible for relapse behaviors. The chapter first includes a brief discussion of current clinical conceptions of craving. This is followed by an argument for what aspect of human craving animals may experience. This leads to a description of various animal models (primarily using rats) that indirectly measure activity of a basic craving mechanism. A final section is provided with examples of the utility of animal models of craving illustrated with translational evidence. It is argued that basic craving is amenable to study by animal models of craving that measure motivated drug seeking behavior. Furthermore, reflection on a distinction between conscious (subjective) craving and basic craving leads to the following possible conclusions: one could treat the conscious craving and this would provide some benefit to the addict. But what would remain is the basic craving response to drug-paired stimuli, situations, and even drug-focused thought processes. Reducing basic craving using pharmaco- or behavioral therapies based upon animal model findings may ultimately be more effective at reducing relapse behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tiffany ST (1990) A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol Rev 97:147–168

    PubMed  CAS  Google Scholar 

  2. Pickens RW, Johanson CE (1992) Craving: consensus of status and agenda for future research. Drug Alcohol Depend 30:127–131

    PubMed  CAS  Google Scholar 

  3. WHO (2007) International statistical classification of diseases and related health problems 10th revision version for 2007. World Health Organization, Canberra

    Google Scholar 

  4. WHO (1992) Informal expert group meeting on the craving mechanism. World Health Organization, Vienna

    Google Scholar 

  5. Tiffany ST, Carter BL, Singleton EG (2000) Challenges in the manipulation, assessment and interpretation of craving relevant variables. Addiction 95(Suppl 2):S177–S187

    PubMed  Google Scholar 

  6. Carter BL, Tiffany ST (1999) Meta-analysis of cue-reactivity in addiction research. Addiction 94:327–340

    PubMed  CAS  Google Scholar 

  7. Newton TF, Khalsa-Denison ME, Gawin FH (1997) The face of craving? Facial muscle EMG and reported craving in abstinent and non-abstinent cocaine users. Psychiatry Res 73:115–118

    PubMed  CAS  Google Scholar 

  8. Childress AR, McLellan AT, O’Brien CP (1986) Conditioned responses in a methadone population. A comparison of laboratory, clinic, and natural settings. J Subst Abuse Treat 3:173–179

    PubMed  CAS  Google Scholar 

  9. Sayette MA, Shiffman S, Tiffany ST, Niaura RS, Martin CS, Shadel WG (2000) The measurement of drug craving. Addiction 95(Suppl 2):S189–S210

    PubMed  Google Scholar 

  10. Larimer ME, Palmer RS, Marlatt GA (1999) Relapse prevention. An overview of Marlatt’s cognitive-behavioral model. Alcohol Res Health 23:151–160

    PubMed  CAS  Google Scholar 

  11. Yamamoto RT, Karlsgodt KH, Rott D, Lukas SE, Elman I (2007) Effects of perceived cocaine availability on subjective and objective responses to the drug. Subst Abuse Treat Prev Policy 2:30

    PubMed  Google Scholar 

  12. Paliwal P, Hyman SM, Sinha R (2008) Craving predicts time to cocaine relapse: further validation of the Now and Brief versions of the cocaine craving questionnaire. Drug Alcohol Depend 93:252–259

    PubMed  CAS  Google Scholar 

  13. Wilson SJ, Sayette MA, Fiez JA (2004) Prefrontal responses to drug cues: a neurocognitive analysis. Nat Neurosci 7:211–214

    PubMed  Google Scholar 

  14. Wilson SJ, Sayette MA, Delgado MR, Fiez JA (2005) Instructed smoking expectancy modulates cue-elicited neural activity: a ­preliminary study. Nicotine Tob Res 7:637–645

    PubMed  Google Scholar 

  15. Shiffman S, Hufford M, Hickcox M, Paty JA, Gnys M, Kassel JD (1997) Remember that? A comparison of real-time versus retrospective recall of smoking lapses. J Consult Clin Psychol 65:292–300

    PubMed  CAS  Google Scholar 

  16. Gawin FH, Kleber HD (1986) Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry 43:107–113

    PubMed  CAS  Google Scholar 

  17. Tiffany ST, Carter BL (1998) Is craving the source of compulsive drug use? J Psychopharmacol 12:23–30

    PubMed  CAS  Google Scholar 

  18. Rohsenow DJ, Monti PM (1999) Does urge to drink predict relapse after treatment? Alcohol Res Health 23:225–232

    PubMed  CAS  Google Scholar 

  19. James W (1890) The principles of psychology. Henry Holt and Company, New York

    Google Scholar 

  20. Tiffany ST, Conklin CA (2000) A cognitive processing model of alcohol craving and compulsive alcohol use. Addiction 95(Suppl 2):S145–S153

    PubMed  Google Scholar 

  21. Wise RA (1988) The neurobiology of craving: implications for the understanding and treatment of addiction. J Abnorm Psychol 97:118–132

    PubMed  CAS  Google Scholar 

  22. Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    PubMed  Google Scholar 

  23. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    PubMed  CAS  Google Scholar 

  24. Koob GF, Le Moal M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53

    PubMed  Google Scholar 

  25. Sapolsky RM (2003) Stress and plasticity in the limbic system. Neurochem Res 28:1735–1742

    PubMed  CAS  Google Scholar 

  26. Robbins TW, Ersche KD, Everitt BJ (2008) Drug addiction and the memory systems of the brain. Ann NY Acad Sci 1141:1–21

    PubMed  CAS  Google Scholar 

  27. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    PubMed  CAS  Google Scholar 

  28. Markou A, Weiss F, Gold LH, Caine SB, Schulteis G, Koob GF (1993) Animal models of drug craving. Psychopharmacology (Berl) 112:163–182

    CAS  Google Scholar 

  29. Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural systems perspective. J Neurosci 22:3312–3320

    PubMed  CAS  Google Scholar 

  30. Siegel S, Baptista MA, Kim JA, McDonald RV, Weise-Kelly L (2000) Pavlovian psychopharmacology: the associative basis of tolerance. Exp Clin Psychopharmacol 8:276–293

    PubMed  CAS  Google Scholar 

  31. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    PubMed  CAS  Google Scholar 

  32. Holland PC, Bouton ME (1999) Hippocampus and context in classical conditioning. Curr Opin Neurobiol 9:195–202

    PubMed  CAS  Google Scholar 

  33. Stalnaker TA, Takahashi Y, Roesch MR, Schoenbaum G (2009) Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology 56(Suppl 1):63–72

    PubMed  CAS  Google Scholar 

  34. Jaffe JH, Cascella NG, Kumor KM, Sherer MA (1989) Cocaine-induced cocaine craving. Psychopharmacology (Berl) 97:59–64

    CAS  Google Scholar 

  35. Gawin FH (1991) Cocaine addiction: psychology and neurophysiology. Science 251:1580–1586

    PubMed  CAS  Google Scholar 

  36. O’Brien CP, Gardner EL (2005) Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol Ther 108:18–58

    PubMed  Google Scholar 

  37. Miczek KA, de Wit H (2008) Challenges for translational psychopharmacology research – some basic principles. Psychopharmacology (Berl) 199:291–301

    CAS  Google Scholar 

  38. Bozarth MA, Wise RA (1984) Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 224:516–517

    PubMed  CAS  Google Scholar 

  39. Childress AR, O’Brien CP (2000) Dopamine receptor partial agonists could address the duality of cocaine craving. Trends Pharmacol Sci 21:6–9

    PubMed  CAS  Google Scholar 

  40. Stewart J, Wise RA (1992) Reinstatement of heroin self-administration habits: morphine prompts and naltrexone discourages renewed responding after extinction. Psychopharmacology (Berl) 108:79–84

    CAS  Google Scholar 

  41. Wikler A (1948) Recent progress in research on the neurophysiologic basis of morphine addiction. Am J Psychiatry 105:329–338

    PubMed  CAS  Google Scholar 

  42. McAuliffe WE (1982) A test of Wikler’s theory of relapse: the frequency of relapse due to conditioned withdrawal sickness. Int J Addict 17:19–33

    PubMed  CAS  Google Scholar 

  43. Markou A, Koob GF (1991) Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4:17–26

    PubMed  CAS  Google Scholar 

  44. Kenny PJ, Chen SA, Kitamura O, Markou A, Koob GF (2006) Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci 26:5894–5900

    PubMed  CAS  Google Scholar 

  45. Shaham Y, Stewart J (1995) Stress reinstates heroin-seeking in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology (Berl) 119:334–341

    CAS  Google Scholar 

  46. Shaham Y, Rajabi H, Stewart J (1996) Relapse to heroin-seeking in rats under opioid maintenance: the effects of stress, heroin priming, and withdrawal. J Neurosci 16:1957–1963

    PubMed  CAS  Google Scholar 

  47. Zhou W, Zhang F, Liu H et al (2008) Effects of training and withdrawal periods on heroin seeking induced by conditioned cue in an animal of model of relapse. Psychopharmacology (Berl) 203(4):677–684

    Google Scholar 

  48. Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54:1–42

    PubMed  CAS  Google Scholar 

  49. de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology (Berl) 75:134–143

    Google Scholar 

  50. Carroll ME (1985) The role of food deprivation in the maintenance and reinstatement of cocaine-seeking behavior in rats. Drug Alcohol Depend 16:95–109

    PubMed  CAS  Google Scholar 

  51. Whitelaw RB, Markou A, Robbins TW, Everitt BJ (1996) Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology (Berl) 127:213–224

    CAS  Google Scholar 

  52. Berridge KC, Robinson TE (1995) The mind of an addicted brain: neural sensitization of wanting versus liking. Curr Direct Psychol Sci 4:71–75

    Google Scholar 

  53. Roll JM, Petry NM, Stitzer ML et al (2006) Contingency management for the treatment of methamphetamine use disorders. Am J Psychiatry 163:1993–1999

    PubMed  Google Scholar 

  54. Leri F, Stewart J (2002) The consequences of different “lapses” on relapse to heroin seeking in rats. Exp Clin Psychopharmacol 10:339–349

    PubMed  CAS  Google Scholar 

  55. Epstein DH, Preston KL, Stewart J, Shaham Y (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 189:1–16

    CAS  Google Scholar 

  56. Stitzer ML, Bickel WK, Bigelow GE, Liebson IA (1986) Effect of methadone dose contingencies on urinalysis test results of polydrug-abusing methadone-maintenance patients. Drug Alcohol Depend 18:341–348

    PubMed  CAS  Google Scholar 

  57. Torregrossa MM, Quinn JJ, Taylor JR (2008) Impulsivity, compulsivity, and habit: the role of orbitofrontal cortex revisited. Biol Psychiatry 63:253–255

    PubMed  Google Scholar 

  58. Koob GF, Weiss F, Tiffany ST, Zieglgansberger W, Spanagel R (1999) Animal models of craving: a roundtable discussion. Alcohol Res Health 23:233–236

    PubMed  CAS  Google Scholar 

  59. Wise RA, Hoffman DC (1992) Localization of drug reward mechanisms by intracranial injections. Synapse 10:247–263

    PubMed  CAS  Google Scholar 

  60. Kantak KM, Mashhoon Y, Silverman DN, Janes AC, Goodrich CM (2009) Role of the orbitofrontal cortex and dorsal striatum in regulating the dose-related effects of self-administered cocaine. Behav Brain Res 201:128–136

    PubMed  CAS  Google Scholar 

  61. Arnold JM, Roberts DC (1997) A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57:441–447

    PubMed  CAS  Google Scholar 

  62. Gonzalez FA, Goldberg SR (1977) Effects of cocaine and d-amphetamine on behavior maintained under various schedules of food presentation in squirrel monkeys. J Pharmacol Exp Ther 201:33–43

    PubMed  CAS  Google Scholar 

  63. Phillips G, Willner P, Sampson D, Nunn J, Muscat R (1991) Time-, schedule-, and reinforcer-dependent effects of pimozide and amphetamine. Psychopharmacology (Berl) 104:125–131

    CAS  Google Scholar 

  64. Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration ­studies in rats: a method to evaluate reinforcing ­efficacy. J Neurosci Methods 66:1–11

    PubMed  CAS  Google Scholar 

  65. Roberts DC, Loh EA, Vickers G (1989) Self-administration of cocaine on a progressive ratio schedule in rats: dose-response relationship and effect of haloperidol pretreatment. Psychopharmacology (Berl) 97:535–538

    CAS  Google Scholar 

  66. Stafford D, LeSage MG, Glowa JR (1998) Progressive-ratio schedules of drug delivery in the analysis of drug self-administration: a review. Psychopharmacology (Berl) 139:169–184

    CAS  Google Scholar 

  67. Roberts DC, Morgan D, Liu Y (2007) How to make a rat addicted to cocaine. Prog Neuropsychopharmacol Biol Psychiatry 31:1614–1624

    PubMed  CAS  Google Scholar 

  68. Davis WM, Smith SG (1976) Role of conditioned reinforcers in the initiation, maintenance and extinction of drug-seeking behavior. Pavlov J Biol Sci 11:222–236

    PubMed  CAS  Google Scholar 

  69. Kalivas PW, McFarland K (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl) 168:44–56

    CAS  Google Scholar 

  70. Mogenson GJ, Yang CR (1991) The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv Exp Med Biol 295:267–290

    PubMed  CAS  Google Scholar 

  71. Tempel BL, Bonini N, Dawson DR, Quinn WG (1983) Reward learning in normal and mutant Drosophila. Proc Natl Acad Sci USA 80:1482–1486

    PubMed  CAS  Google Scholar 

  72. Kusayama T, Watanabe S (2000) Reinforcing effects of methamphetamine in planarians. NeuroReport 11:2511–2513

    PubMed  CAS  Google Scholar 

  73. Buttarelli FR, Pellicano C, Pontieri FE (2008) Neuropharmacology and behavior in planarians: translations to mammals. Comp Biochem Physiol C Toxicol Pharmacol 147:399–408

    PubMed  Google Scholar 

  74. Mueller D, Stewart J (2000) Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction. Behav Brain Res 115:39–47

    PubMed  CAS  Google Scholar 

  75. McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    PubMed  CAS  Google Scholar 

  76. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    PubMed  CAS  Google Scholar 

  77. Bouton ME, Bolles RC (1979) Role of conditioned contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim Behav Process 5:368–378

    PubMed  CAS  Google Scholar 

  78. Ciccocioppo R, Sanna PP, Weiss F (2001) Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D(1) antagonists. Proc Natl Acad Sci USA 98:1976–1981

    PubMed  CAS  Google Scholar 

  79. McFarland K, Ettenberg A (1997) Reinstatement of drug-seeking behavior produced by heroin-predictive environmental stimuli. Psychopharmacology (Berl) 131:86–92

    CAS  Google Scholar 

  80. Crombag HS, Shaham Y (2002) Renewal of drug seeking by contextual cues after prolonged extinction in rats. Behav Neurosci 116:169–173

    PubMed  CAS  Google Scholar 

  81. Ettenberg A, McFarland K (2003) Effects of haloperidol on cue-induced autonomic and behavioral indices of heroin reward and ­motivation. Psychopharmacology (Berl) 168:139–145

    CAS  Google Scholar 

  82. Crombag HS, Grimm JW, Shaham Y (2002) Effect of dopamine receptor antagonists on renewal of cocaine seeking by reexposure to drug-associated contextual cues. Neurop­sychopharmacology 27:1006–1015

    PubMed  CAS  Google Scholar 

  83. Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann NY Acad Sci 877:412–438

    PubMed  CAS  Google Scholar 

  84. Lex A, Hauber W (2008) Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian-instrumental transfer. Learn Mem 15:483–491

    PubMed  Google Scholar 

  85. Bindra D (1972) A unified account of classical conditioning and operant training. In: Black HH, Prokasy WF (eds) Classical conditioning II: current research and theory. Appleton-Century-Crofts, New York, pp 453–481

    Google Scholar 

  86. Grimm JW, Kruzich PJ, See RE (2000) Contingent access to stimuli associated with cocaine self-administration is required for reinstatement of drug-seeking behavior. Psychobiology 28:383–386

    CAS  Google Scholar 

  87. Olmstead MC, Lafond MV, Everitt BJ, Dickinson A (2001) Cocaine seeking by rats is a goal-directed action. Behav Neurosci 115:394–402

    PubMed  CAS  Google Scholar 

  88. Di Ciano P, Robbins TW, Everitt BJ (2008) Differential effects of nucleus accumbens core, shell, or dorsal striatal inactivations on the persistence, reacquisition, or reinstatement of responding for a drug-paired conditioned reinforcer. Neuropsychopharmacology 33:1413–1425

    PubMed  Google Scholar 

  89. Grimm JW, Hope BT, Wise RA, Neuroadaptation SY (2001) Incubation of cocaine craving after withdrawal. Nature 412:141–142

    PubMed  CAS  Google Scholar 

  90. Lu L, Grimm JW, Hope BT, Shaham Y (2004) Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47(Suppl 1):214–226

    PubMed  CAS  Google Scholar 

  91. Bienkowski P, Rogowski A, Korkosz A et al (2004) Time-dependent changes in alcohol-seeking behaviour during abstinence. Eur Neuropsychopharmacol 14:355–360

    PubMed  CAS  Google Scholar 

  92. Piasecki TM, Fiore MC, Baker TB (1998) Profiles in discouragement: two studies of variability in the time course of smoking withdrawal symptoms. J Abnorm Psychol 107:238–251

    PubMed  CAS  Google Scholar 

  93. Piasecki TM, Niaura R, Shadel WG et al (2000) Smoking withdrawal dynamics in unaided quitters. J Abnorm Psychol 109:74–86

    PubMed  CAS  Google Scholar 

  94. Kosten TR, Kosten TA, Poling J, Oliveto A (2005) “Incubation” of cocaine relapse during a disulfiram clinical trial. In: College on problems of drug dependence annual meeting 2005: poster #357, Orlando

    Google Scholar 

  95. Bergquist KL, Paliwal P, Hyman SM, Sinha R (2006) Changes in cocaine craving, mood and stress in cocaine-dependent individuals during inpatient treatment and outpatient follow-up. In: College on problems of drug dependence annual meeting 2006: poster #67, Los Angeles

    Google Scholar 

  96. Nava F, Caldiroli E, Premi S, Lucchini A (2006) Relationship between plasma cortisol levels, withdrawal symptoms and craving in abstinent and treated heroin addicts. J Addict Dis 25:9–16

    PubMed  Google Scholar 

  97. Liu X, Weiss F (2002) Reversal of ethanol-seeking behavior by D1 and D2 antagonists in an animal model of relapse: differences in antagonist potency in previously ethanol-dependent versus nondependent rats. J Pharmacol Exp Ther 300:882–889

    PubMed  CAS  Google Scholar 

  98. Hutchison KE, Wooden A, Swift RM et al (2003) Olanzapine reduces craving for alcohol: a DRD4 VNTR polymorphism by pharmacotherapy interaction. Neuropsycho-pharmacology 28:1882–1888

    PubMed  CAS  Google Scholar 

  99. Gal K, Gyertyan I (2006) Dopamine D3 as well as D2 receptor ligands attenuate the cue-induced cocaine-seeking in a relapse model in rats. Drug Alcohol Depend 81:63–70

    PubMed  CAS  Google Scholar 

  100. Katner SN, Magalong JG, Weiss F (1999) Reinstatement of alcohol-seeking behavior by drug-associated discriminative stimuli after prolonged extinction in the rat. Neuropsychopharmacology 20:471–479

    PubMed  CAS  Google Scholar 

  101. Burattini C, Gill TM, Aicardi G, Janak PH (2006) The ethanol self-administration context as a reinstatement cue: acute effects of naltrexone. Neuroscience 139:877–887

    PubMed  CAS  Google Scholar 

  102. Myrick H, Anton RF, Li X, Henderson S, Randall PK, Voronin K (2008) Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch Gen Psychiatry 65:466–475

    PubMed  CAS  Google Scholar 

  103. Richardson K, Baillie A, Reid S et al (2008) Do acamprosate or naltrexone have an effect on daily drinking by reducing craving for alcohol? Addiction 103:953–959

    PubMed  Google Scholar 

  104. Jayaram-Lindstrom N, Hammarberg A, Beck O, Franck J (2008) Naltrexone for the treatment of amphetamine dependence: a randomized, placebo-controlled trial. Am J Psychiatry 165:1442–1448

    PubMed  Google Scholar 

  105. Drewnowski A, Krahn DD, Demitrack MA, Nairn K, Gosnell BA (1995) Naloxone, an opiate blocker, reduces the consumption of sweet high-fat foods in obese and lean female binge eaters. Am J Clin Nutr 61:1206–1212

    PubMed  CAS  Google Scholar 

  106. Marrazzi MA, Markham KM, Kinzie J, Luby ED (1995) Binge eating disorder: response to naltrexone. Int J Obes Relat Metab Disord 19:143–145

    PubMed  CAS  Google Scholar 

  107. Grimm JW, Manaois M, Osincup D, Wells B, Buse C (2007) Naloxone attenuates incubated sucrose craving in rats. Psychopharmacology (Berl) 194:537–544

    CAS  Google Scholar 

  108. Cornish JL, Kalivas PW (2001) Cocaine sensitization and craving: differing roles for dopamine and glutamate in the nucleus accumbens. J Addict Dis 20:43–54

    PubMed  CAS  Google Scholar 

  109. De Vries TJ, Shaham Y, Homberg JR et al (2001) A cannabinoid mechanism in relapse to cocaine seeking. Nat Med 7:1151–1154

    PubMed  Google Scholar 

  110. Peng XQ, Li X, Gilbert JG et al (2008) Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism. Drug Alcohol Depend 97:216–225

    PubMed  CAS  Google Scholar 

  111. Feltenstein MW, Altar CA, See RE (2007) Aripiprazole blocks reinstatement of cocaine seeking in an animal model of relapse. Biol Psychiatry 61:582–590

    PubMed  CAS  Google Scholar 

  112. LaRowe SD, Mardikian P, Malcolm R et al (2006) Safety and tolerability of N-acetylcysteine in cocaine-dependent individuals. Am J Addict 15:105–110

    PubMed  Google Scholar 

  113. Hart CL, Haney M, Vosburg SK, Rubin E, Foltin RW (2008) Smoked cocaine self-administration is decreased by modafinil. Neuropsychopharmacology 33:761–768

    PubMed  CAS  Google Scholar 

  114. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    PubMed  Google Scholar 

  115. Sinha R, Li CS (2007) Imaging stress- and cue-induced drug and alcohol craving: association with relapse and clinical implications. Drug Alcohol Rev 26:25–31

    PubMed  Google Scholar 

  116. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18

    PubMed  CAS  Google Scholar 

  117. Wang GJ, Volkow ND, Thanos PK, Fowler JS (2004) Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 23:39–53

    PubMed  Google Scholar 

  118. Volkow ND, Wang GJ, Telang F et al (2008) Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. Neuroimage 39:1266–1273

    PubMed  Google Scholar 

  119. Childress AR, Ehrman RN, Wang Z et al (2008) Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS ONE 3:e1506

    PubMed  Google Scholar 

  120. Tiffany ST (1999) Cognitive concepts of craving. Alcohol Res Health 23:215–224

    PubMed  CAS  Google Scholar 

  121. Bindra D (1976) A theory of intelligent behavior. Wiley, New York

    Google Scholar 

  122. Grimm JW, See RE (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 22:473–479

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grimm, J.W. (2011). Craving. In: Olmstead, M. (eds) Animal Models of Drug Addiction. Neuromethods, vol 53. Humana Press. https://doi.org/10.1007/978-1-60761-934-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-934-5_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-933-8

  • Online ISBN: 978-1-60761-934-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics