Skip to main content

Endoplasmic Reticulum Stress as a Target of Therapy Against Oxidative Stress and Hypoxia

  • Chapter
  • First Online:
Studies on Renal Disorders

Abstract

Oxidative stress or hypoxia is the major disturbance that leads to endoplasmic reticulum (ER) dysfunction. The ER maintains protein homeostasis, including the regulation of the concentration, conformation, folding, and trafficking of client proteins. ER dysfunction by the disturbances such as oxidative stress, referred to as ER stress, induces intracellular stress responses, called the unfolded protein response (UPR). The UPR initially serves as an adaptive response, but also induces apoptosis in cells under severe or prolonged ER stress. The linkage of ER stress with oxidative stress or hypoxia, both of which are pathogenic, indicates the potential pathophysiological significance of ER stress across a wide range of diseases. Accumulating evidence indicates that ER stress contributes to glomerular and tubular damages in patients with acute and chronic kidney diseases. In glomeruli, podocyte or mesangial dysfunction tends to induce the adaptive UPR, which involves ER chaperone expression and the attenuation of protein translation to maintain ER homeostasis and ensure cell survival. In tubules, apoptosis, resulting from epithelial cell damage, is caused by the pro-apoptotic UPR, at least in part. These findings emphasize not only the importance of ER stress as a new progression factor but also the interesting future possibility of renoprotective strategy targeting ER stress. These therapeutic approaches may act by breaking the vicious cycle of oxidative stress, hypoxia, and ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malhotra JD, Kaufman RJ: Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 2007;9:2277–2293. Review.

    Google Scholar 

  2. Yoshida H: ER stress and diseases. FEBS J 2007;274:630–658.

    Article  CAS  PubMed  Google Scholar 

  3. Ron D, Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007;8:519–529.

    Article  CAS  PubMed  Google Scholar 

  4. Koumenis C: ER stress, hypoxia tolerance and tumor progression. Curr Mol Med 2006;6:55–69.

    Article  CAS  PubMed  Google Scholar 

  5. Lee AS: GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 2007;67:3496–3499.

    Article  CAS  PubMed  Google Scholar 

  6. Orrenius S, Zhivotovsky B, Nicotera P: Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003;4:552–565.

    Article  CAS  PubMed  Google Scholar 

  7. Endo M, Mori M, Akira S, Gotoh T: C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. J Immunol 2006;176:6245–6253.

    CAS  PubMed  Google Scholar 

  8. Paschen W, Mengesdorf T: Cellular abnormalities linked to endoplasmic reticulum dysfunction in cerebrovascular disease – therapeutic potential. Pharmacol Ther 2005;108:362–375.

    Article  CAS  PubMed  Google Scholar 

  9. Oida Y, Izuta H, Oyagi A, Shimazawa M, Kudo T, Imaizumi K, Hara H: Induction of BiP, an ER-resident protein, prevents the neuronal death induced by transient forebrain ischemia in gerbil. Brain Res 2008;1208:217–224.

    Article  CAS  PubMed  Google Scholar 

  10. Glembotski CC: The role of the unfolded protein response in the heart [review]. J Mol Cell Cardiol 2008;44:453–459.

    Article  CAS  PubMed  Google Scholar 

  11. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K, Ishibashi-Ueda H, Gabbiani G, Bochaton-Piallat ML, Mochizuki N, Kitakaze M: Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 2007;116:1226–1233.

    Article  PubMed  Google Scholar 

  12. Ostergaard L, Simonsen U, Eskildsen-Helmond Y, Vorum H, Uldbjerg N, Honoré B, Mulvany MJ: Proteomics reveals lowering oxygen alters cytoskeletal and endoplasmatic stress proteins in human endothelial cells. Proteomics 2009;19:4457–4467.

    Article  Google Scholar 

  13. Werno C, Zhou J, Brüne B: A23187, ionomycin and thapsigargin upregulate mRNA of HIF-1alpha via endoplasmic reticulum stress rather than a rise in intracellular calcium. J Cell Physiol 2008;215:708–714.

    Article  CAS  PubMed  Google Scholar 

  14. Köditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch G, Franke C, Myllyharju J, Wenger RH, Katschinski DM: Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 2007;110:3610–3617.

    Article  PubMed  Google Scholar 

  15. Chen D, Thomas EL, Kapahi P: HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000486.

    Article  PubMed  Google Scholar 

  16. Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Nishi T, Maier CM, Kinouchi H, Chan PH: Oxidative damage to the endoplasmic reticulum is implicated in ischemic neuronal death. J Cereb Blood Flow Metabol 2003;23:1117–1128.

    CAS  Google Scholar 

  17. Yokouchi M, Hiramatsu N, Hayakawa K, Okamura M, Du S, Kasai A, Takano Y, Shitamura A, Shimada T, Yao J, Kitamura M: Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. J Biol Chem 2008;283:4252–4260.

    Article  CAS  PubMed  Google Scholar 

  18. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D: CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998;12:982–995.

    Article  CAS  PubMed  Google Scholar 

  19. Back SH, Scheuner D, Han J, Song B, Ribick M, Wang J, Gildersleeve RD, Pennathur S, Kaufman RJ: Translation attenuation through eIF2alpha phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells. Cell Metab 2009;10:13–26.

    Article  CAS  PubMed  Google Scholar 

  20. De Gracia DJ, Montie HL: Cerebral ischemia and the unfolded protein response. J Neurochem 2004;91:1–8.

    Article  Google Scholar 

  21. Kohno K, Higuchi T, Ohta S, Kohno K, Kumon Y, Sakaki S: Neuroprotective nitric oxide synthase inhibitor reduces intracellular calcium accumulation following transient global ischemia in the gerbil. Neurosci Lett 1997;224:17–20.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang K, Kaufman RJ: From endoplasmic-reticulum stress to the inflammatory response [review]. Nature 2008;454:455–462.

    Article  CAS  PubMed  Google Scholar 

  23. Lin W, Harding HP, Ron D, Popko B: Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-γ. J Cell Biol 2005;169:603–612.

    Article  CAS  PubMed  Google Scholar 

  24. Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, Chang J, Dwivedi S, Mitsak M, Chen YW, Plotz P, Rosen A, Hoffman E, Raben N: Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 2005:52:1824–1835.

    Article  CAS  PubMed  Google Scholar 

  25. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EE, Higgins DE, Schreiber S, Glimcher LH, Blumberg RS: XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008;134:743–756.

    Article  CAS  PubMed  Google Scholar 

  26. Wouters BG, Koritzinsky M: Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 2008;8:851–864.

    Article  CAS  PubMed  Google Scholar 

  27. Kojima I, Tanaka T, Inagi R, Nishi H, Aburatani H, Kato H, Miyata T, Fujita T, Nangaku M: Metallothionein is upregulated by hypoxia and stabilizes hypoxia-inducible factor in the kidney. Kidney Int 2009;75:268–277.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang K, Kaufman RJ: The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 2006;66:S102–S109.

    Article  CAS  PubMed  Google Scholar 

  29. Oyadomari S, Mori M: Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004;11:381–389.

    Article  CAS  PubMed  Google Scholar 

  30. Xu C, Bailly-Maitre B, Reed JC: Endoplasmic reticulum stress: Cell life and death decisions. J Clin Invest 2005;115:2656–2664.

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa S, Kitao Y, Hori O: Ischemia-induced neuronal cell death and stress response. Antioxid Redox Signal 2007;9:573–587.

    Article  CAS  PubMed  Google Scholar 

  32. Inagi R: Endoplasmic reticulum stress as a progression factor for kidney injury [review]. Curr Opin Pharmacol 2010;10(2):156–165.

    Article  CAS  PubMed  Google Scholar 

  33. Kitamura M: Endoplasmic reticulum stress in glomerulonephritis: the bad guy turns good? J Am Soc Nephrol 2009;20:1871–1873.

    Article  PubMed  Google Scholar 

  34. Cybulsky AV, Takano T, Papillon J, Khadir A, Liu J, Peng H: Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J Biol Chem 2002;277:41342–41351.

    Article  CAS  PubMed  Google Scholar 

  35. Cybulsky AV, Takano T, Papillon J, Bijian K: Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury. J Biol Chem 2005;280:24396–24403.

    Article  CAS  PubMed  Google Scholar 

  36. Nakajo A, Khoshnoodi J, Takenaka H, Hagiwara E, Watanabe T, Kawakami H, Kurayama R, Sekine Y, Bessho F, Takahashi S, Swiatecka-Urban A, Tryggvason K, Yan K: Mizoribine corrects defective nephrin biogenesis by restoring intracellular energy balance. J Am Soc Nephrol 2007;18:2554–2564.

    Article  CAS  PubMed  Google Scholar 

  37. Cybulsky AV, Takano T, Papillon J, Bijian K, Guillemette J, Kennedy CR: Glomerular epithelial cell injury associated with mutant α-actinin-4. Am J Physiol Renal Physiol 2009:297:F987–F995.

    Article  CAS  PubMed  Google Scholar 

  38. Fujii Y, Khoshnoodi J, Takenaka H, Hosoyamada M, Nakajo A, Bessho F, Kudo A, Takahashi S, Arimura Y, Yamada A, Nagasawa T, Ruotsalainen V, Tryggvason K, Lee AS, Yan K: The effect of dexamethasone on defective nephrin transport caused by ER stress: a potential mechanism for the therapeutic action of glucocorticoids in the acquired glomerular diseases. Kidney Int 2006;69:1350–1359.

    CAS  PubMed  Google Scholar 

  39. Inagi R, Nangaku M, Onogi H, Ueyama H, Kitao Y, Nakazato K, Ogawa S, Kurokawa K, Couser WG, Miyata T: Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney Int 2005;68:2639–2650.

    Article  CAS  PubMed  Google Scholar 

  40. Inagi R, Kumagai T, Nishi H, Kawakami T, Miyata T, Fujita T, Nangaku M: Preconditioning with endoplasmic reticulum stress ameliorates mesangioproliferative glomerulonephritis. J Am Soc Nephrol 2008;19:915–922.

    Article  CAS  PubMed  Google Scholar 

  41. Markan S, Kohli HS, Joshi K, Minz RW, Sud K, Ahuja M, Anand S, Khullar M: Up regulation of the GRP-78 and GADD-153 and down regulation of Bcl-2 proteins in primary glomerular diseases: a possible involvement of the ER stress pathway in glomerulonephritis. Mol Cell Biochem 2009;324:131–138.

    Article  CAS  PubMed  Google Scholar 

  42. Liu G, Sun Y, Li Z, Song T, Wang H, Zhang Y, Ge Z: Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease. Biochem Biophys Res Commun 2008;370:651–656.

    Article  CAS  PubMed  Google Scholar 

  43. Xu Q, Reed JC: Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1998;1:337–346.

    Article  CAS  PubMed  Google Scholar 

  44. Ohse T, Inagi R, Tanaka T, Ota T, Miyata T, Kojima I, Ingelfinger JR, Ogawa S, Fujita T, Nangaku M: Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int 2006;70:1447–1455.

    Article  CAS  PubMed  Google Scholar 

  45. Kuznetsov G, Bush KT, Zhang PL, Nigam SK: Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Proc Natl Acad Sci USA 1996;93:8584–8589.

    Article  CAS  PubMed  Google Scholar 

  46. Bando Y, Tsukamoto Y, Katayama T, Ozawa K, Kitao Y, Hori O, Stern DM, Yamauchi A, Ogawa S: ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death. FASEB J 2004;18:1401–1403.

    CAS  PubMed  Google Scholar 

  47. Bailly-Maitre B, Fondevila C, Kaldas F, Droin N, Luciano F, Ricci JE, Croxton R, Krajewska M, Zapata JM, Kupiec-Weglinski JW, Farmer D, Reed JC: Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2006;103:2809–2814.

    Article  CAS  PubMed  Google Scholar 

  48. Kimura K, Jin H, Ogawa M, Aoe T: Dysfunction of the ER chaperone BiP accelerates the renal tubular injury. Biochem Biophys Res Commun 2008;366:1048–1053.

    Article  CAS  PubMed  Google Scholar 

  49. Lindenmeyer MT, Rastaldi MP, Ikehata M, Neusser MA, Kretzler M, Cohen CD, Schlöndorff D: Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol 2008;19:2225–2236.

    Article  PubMed  Google Scholar 

  50. Lorz C, Justo P, Sanz A, Subira D, Egido J, Ortiz A: Paracetamol-induced renal tubular injury: a role for ER stress. J Am Soc Nephrol 2004;15:380–389.

    Article  CAS  PubMed  Google Scholar 

  51. Liu H, Baliga R: Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 2005;16:1985–1992.

    Article  CAS  PubMed  Google Scholar 

  52. Peyrou M, Hanna PE, Cribb AE: Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci 2007;99:346–353.

    Article  CAS  PubMed  Google Scholar 

  53. Pallet N, Bouvier N, Legendre C, Gilleron J, Codogno P, Beaune P, Thervet E, Anglicheau D: Autophagy protects renal tubular cells against cyclosporine toxicity. Autophagy 2008;4:783–791.

    CAS  PubMed  Google Scholar 

  54. Kawakami T, Inagi R, Takano H, Sato S, Ingelfinger JR, Fujita T, Nangaku M: Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrol Dial Transplant 2009;24:2665–2672.

    Article  CAS  PubMed  Google Scholar 

  55. Naidoo N: The endoplasmic reticulum stress response and aging [review]. Rev Neurosci 2009;20:23–37.

    CAS  PubMed  Google Scholar 

  56. Nuss JE, Choksi KB, DeFord JH, Papaconstantinou J: Decreased enzyme activities of chaperones PDI and BiP in aged mouse livers. Biochem Biophys Res Commun 2008;365:355–361.

    Article  CAS  PubMed  Google Scholar 

  57. Morris JA, Dorner AJ, Edwards CA, Hendershot LM, Kaufman RJ: Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J Biol Chem 1997;272:4327–4334.

    Article  CAS  PubMed  Google Scholar 

  58. Peyrou M, Cribb AE: Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicol In Vitro 2007;21:878–886.

    CAS  PubMed  Google Scholar 

  59. Prachasilchai W, Sonoda H, Yokota-Ikeda N, Oshikawa S, Aikawa C, Uchida K, Ito K, Kudo T, Imaizumi K, Ikeda M: A protective role of unfolded protein response in mouse ischemic acute kidney injury. Eur J Pharmacol 2008;592:138–145.

    Article  CAS  PubMed  Google Scholar 

  60. Asmellash S, Stevens JL, Ichimura T: Modulating the endoplasmic reticulum stress response with trans-4,5-dihydroxy-1,2-dithiane prevents chemically induced renal injury in vivo. Toxicol Sci 2005;88:576–584.

    Article  CAS  PubMed  Google Scholar 

  61. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J: A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 2005;307:935–939.

    Article  CAS  PubMed  Google Scholar 

  62. Kim I, Shu CW, Xu W, Shiau CW, Grant D, Vasile S, Cosford ND, Reed JC: Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. J Biol Chem 2009;284:1593–1603.

    Article  CAS  PubMed  Google Scholar 

  63. Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y: Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 2004;66:899–908.

    Article  CAS  PubMed  Google Scholar 

  64. Liu XL, Doné SC, Yan K, Kilpeläinen P, Pikkarainen T, Tryggvason K: Defective trafficking of nephrin missense mutants rescued by a chemical chaperone. J Am Soc Nephrol 2004;15:1731–1738.

    Article  CAS  PubMed  Google Scholar 

  65. Xie Q, Khaoustov VI, Chung CC, Sohn J, Krishnan B, Lewis DE, Yoffe B: Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology 2002;36:592–601.

    Article  CAS  PubMed  Google Scholar 

  66. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006;313:1137–1140.

    Article  PubMed  Google Scholar 

  67. Chen Y, Liu CP, Xu KF, Mao XD, Lu YB, Fang L, Yang JW, Liu C: Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am J Nephrol 2008;28:1014–1022.

    Article  CAS  PubMed  Google Scholar 

  68. Izuhara Y, Nangaku M, Takizawa S, Takahashi S, Shao J, Oishi H, Kobayashi H, van Ypersele de Strihou C, Miyata T: A novel class of advanced glycation inhibitors ameliorates renal and cardiovascular damage in experimental rat models. Nephrol Dial Transplant 2008;23:497–509.

    Article  CAS  PubMed  Google Scholar 

  69. Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ: Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci USA 2008;105:18525–18530.

    Article  CAS  PubMed  Google Scholar 

  70. Natarajan R, Salloum FN, Fisher BJ, Smithson L, Almenara J, Fowler AA 3rd: Prolyl hydroxylase inhibition attenuates post-ischemic cardiac injury via induction of endoplasmic reticulum stress genes. Vascul Pharmacol 2009;51:110–118.

    Article  CAS  PubMed  Google Scholar 

  71. Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, Yutani C, Ozawa K, Ogawa S, Tomoike H, Hori M, Kitakaze M: Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 2004;110:705–712.

    Article  PubMed  Google Scholar 

  72. Cullinan SB, Diehl JA: Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 2006;38:317–332.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants-in-aid for scientific research from the Japan Society for the Promotion of Science (19590939) and a grant from the Kidney Foundation, Japan (JKFB09-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiko Inagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Inagi, R. (2011). Endoplasmic Reticulum Stress as a Target of Therapy Against Oxidative Stress and Hypoxia. In: Miyata, T., Eckardt, KU., Nangaku, M. (eds) Studies on Renal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60761-857-7_33

Download citation

Publish with us

Policies and ethics