Skip to main content

Computational Analysis of ChIP-seq Data

  • Protocol
  • First Online:
Computational Biology of Transcription Factor Binding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 674))

Abstract

Chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) is a new technology to map protein–DNA interactions in a genome. The genome-wide transcription factor binding site and chromatin modification data produced by ChIP-seq provide invaluable information for studying gene regulation. This chapter reviews basic characteristics of ChIP-seq data and introduces a computational procedure to identify protein–DNA interactions from ChIP-seq experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  2. Robertson, G., Hirst, M., Bainbridge, M. et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4, 651–657.

    Article  PubMed  CAS  Google Scholar 

  3. Mikkelsen, T.S., Ku, M., Jaffe, D.B. et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.

    Article  PubMed  CAS  Google Scholar 

  4. Barski, A., Cuddapah, S., Cui, K. et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837.

    Article  PubMed  CAS  Google Scholar 

  5. Shendure, J., and Ji, H. (2008) Next-generation DNA sequencing. Nat Biotechnol 26, 1135–1145.

    Article  PubMed  CAS  Google Scholar 

  6. Ren, B., Robert, F., Wyrick, J.J. et al. (2000) Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309.

    Article  PubMed  CAS  Google Scholar 

  7. Cawley, S., Bekiranov, S., Ng, H.H. et al. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509.

    Article  PubMed  CAS  Google Scholar 

  8. Park, P.J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10, 669–680.

    Article  PubMed  CAS  Google Scholar 

  9. Ji, H., Jiang, H., Ma, W. et al. (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26, 1293–1300.

    Article  PubMed  CAS  Google Scholar 

  10. Rozowsky, J., Euskirchen, G., Auerbach, R.K. et al. (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27, 66–75.

    Article  PubMed  CAS  Google Scholar 

  11. Kharchenko, P.V., Tolstorukov, M.Y., and Park, P.J. (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26, 1351–1359.

    Article  PubMed  CAS  Google Scholar 

  12. Marson, A., Levine, S.S., Cole, M.F. et al. (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533.

    Article  PubMed  CAS  Google Scholar 

  13. Schmid, C.D., and Bucher, P. (2007) ChIP-Seq data reveal nucleosome architecture of human promoters. Cell 131, 831–832.

    Article  PubMed  CAS  Google Scholar 

  14. Valouev, A., Johnson, D.S., Sundquist, A. et al. (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-seq data. Nat Methods 5, 829–834.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang, Y., Liu, T., Meyer, C.A. et al. (2008) Model-based analysis of ChIP-seq (MACS). Genome Biol 9, R137.

    Article  PubMed  Google Scholar 

  16. Jothi, R., Cuddapah, S., Barski, A., Cui, K., and Zhao, K. (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-seq data. Nucleic Acids Res 36, 5221–5231.

    Article  PubMed  CAS  Google Scholar 

  17. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.

    Article  PubMed  Google Scholar 

  18. Li, H., Ruan, J., and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18, 1851–1858.

    Article  PubMed  CAS  Google Scholar 

  19. Jiang, H., and Wong, W.H. (2008) SeqMap : mapping massive amount of oligonucleotides to the genome. Bioinformatics 24, 2395–2396.

    Article  PubMed  CAS  Google Scholar 

  20. Rumble, S.M., Lacroute, P., Dalca, A.V. et al. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5, e1000386.

    Article  PubMed  Google Scholar 

  21. Subramanian, A., Tamayo, P., Mootha, V.K. et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102, 15545–15550.

    Article  PubMed  CAS  Google Scholar 

  22. Kent, W.J., Sugnet, C.W., Furey, T.S. et al. (2002) The human genome browser at UCSC. Genome Res 12, 996–1006.

    PubMed  CAS  Google Scholar 

  23. Smyth, G.K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, 1–9 (Article 3).

    Google Scholar 

  24. Fejes, A.P., Robertson, G., Bilenky, M. et al. (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24, 1729–1730.

    Article  PubMed  CAS  Google Scholar 

  25. Nix, D.A., Courdy, S.J., and Boucher, K.M. (2008) Empirical methods for controlling false positives and estimating confidence in ChIP-seq peaks. BMC Bioinformatics 9, 523.

    Article  PubMed  Google Scholar 

  26. Ji, H., Vokes, S.A., and Wong, W.H. (2006) A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res 34, e146.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkai Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ji, H. (2010). Computational Analysis of ChIP-seq Data. In: Ladunga, I. (eds) Computational Biology of Transcription Factor Binding. Methods in Molecular Biology, vol 674. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-854-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-854-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-853-9

  • Online ISBN: 978-1-60761-854-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics