Skip to main content

Reconstructing Transcriptional Regulatory Networks Using Three-Way Mutual Information and Bayesian Networks

  • Protocol
  • First Online:
Computational Biology of Transcription Factor Binding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 674))

  • 3855 Accesses

Abstract

Probabilistic methods such as mutual information and Bayesian networks have become a major category of tools for the reconstruction of regulatory relationships from quantitative biological data. In this chapter, we describe the theoretic framework and the implementation for learning gene regulatory networks using high-order mutual information via the MI3 method (Luo et al. (2008) BMC Bioinformatics 9, 467; Luo (2008) Gene regulatory network reconstruction and pathway inference from high throughput gene expression data. PhD thesis). We also cover the closely related Bayesian network method in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V. et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14, 1675–1680.

    Article  PubMed  CAS  Google Scholar 

  2. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, W.P., and Tzou, W.S. (2009) Computational methods for discovering gene networks from expression data. Brief Bioinform 10, 408–23.

    PubMed  CAS  Google Scholar 

  4. Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns Proc Natl Acad Sci USA 95, 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  5. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K. et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273–3297.

    PubMed  CAS  Google Scholar 

  6. Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R., and Kohane, I.S. (2000) Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA 97, 12182–12186.

    Article  PubMed  CAS  Google Scholar 

  7. Moriyama, M., Hoshida, Y., Otsuka, M., Nishimura, S., Kato, N. et al. (2003) Relevance network between chemosensitivity and transcriptome in human hepatoma cells. Mol Cancer Ther 2, 199–205.

    PubMed  CAS  Google Scholar 

  8. Schafer, J., and Strimmer, K. (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754–764.

    Article  PubMed  Google Scholar 

  9. Alon, U. (2007) An introduction to systems biology : design principles of biological circuits, Chapman & Hall/CRC, Boca Raton, FL.

    Google Scholar 

  10. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., and Young, R.A. (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput 6, 422–433.

    Google Scholar 

  11. Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7, 601–620.

    Article  PubMed  CAS  Google Scholar 

  12. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., and Nolan, G.P. (2005) Causal protein-signaling networks derived from multiparameter single-cell data Science 308, 523–529.

    Article  PubMed  CAS  Google Scholar 

  13. Friedman, N. (2004) Inferring cellular networks using probabilistic graphical models. Science 303, 799–805.

    Article  PubMed  CAS  Google Scholar 

  14. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R. et al. (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37, 382–390.

    Article  PubMed  CAS  Google Scholar 

  15. Butte, A.J., and Kohane, I.S. (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 2000, 418–429.

    Google Scholar 

  16. Heckerman, D. (1995) Microsoft research.

    Google Scholar 

  17. Steuer, R., Kurths, J., Daub, C.O., Weise, J., and Selbig, J. (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(Suppl. 2), S231–S240.

    Article  PubMed  Google Scholar 

  18. Friedman, N., Nachman, I., and Pe’er, D. (1999) In: Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99). pp. 206–215, Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  19. Mcgill, W.J. (1954) Multivariate information transmission. Psychometrika 19, 97–116.

    Article  Google Scholar 

  20. Jakulin, A., and Bratko, I. (2004) Quantifying and visualizing attribute interactions: an approach based on entropy. arXiv:cs.AI/0308002.

    Google Scholar 

  21. Nemenman, I. (2004) Information theory, multivariate dependence, and genetic network inference. arXiv:q-bio/0406015.

    Google Scholar 

  22. Luo, W., Hankenson, K.D., and Woolf, P.J. (2008) Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information. BMC Bioinformatics 9, 467.

    Article  PubMed  Google Scholar 

  23. Luo, W. (2008) Gene regulatory network reconstruction and pathway inference from high throughput gene expression data, PhD thesis, University of Michigan, Ann Arbor, MI.

    Google Scholar 

  24. Shannon, C.E. (1948) A mathematical theory of communication. Bell Sys Tech J 27, 379–423.

    Google Scholar 

  25. Kolmogor.An. (1968) Logical basis for information theory and probability theory. IEEE Trans Inform Theory IT14, 662–664.

    Article  Google Scholar 

  26. Watanabe, S. (1960) Information theoretical analysis of multivariate correlation. IBM J Res Dev 4, 66–82.

    Article  Google Scholar 

  27. Silverman, B.W. (1986) Density estimation for statistics and data analysis. Chapman and Hall, London/New York, NY.

    Google Scholar 

  28. Scott, D.W. (1992) Multivariate density estimation : theory, practice, and visualization. Wiley, New York, NY.

    Book  Google Scholar 

  29. Scott, D.W., and Wand, M.P. (1991) Feasibility of multivariate density estimates. Biometrika 78, 197–205.

    Article  Google Scholar 

  30. Dai, M., Wang, P., Boyd, A.D., Kostov, G., Athey, B. et al. (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33, e175.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Luo, W., Woolf, P.J. (2010). Reconstructing Transcriptional Regulatory Networks Using Three-Way Mutual Information and Bayesian Networks. In: Ladunga, I. (eds) Computational Biology of Transcription Factor Binding. Methods in Molecular Biology, vol 674. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-854-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-854-6_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-853-9

  • Online ISBN: 978-1-60761-854-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics