Skip to main content

Utilization of MALDI-TOF to Determine Chemical-Protein Adduct Formation In Vitro

  • Protocol
  • First Online:
Drug Safety Evaluation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 691))

Abstract

Biological reactive intermediates can be created via metabolism of xenobiotics during the process of chemical elimination. They can also be formed as by-products of cellular metabolism, which produces reactive oxygen and nitrogen species. These reactive intermediates tend to be electrophilic in nature, which enables them to interact with tissue macromolecules, disrupting cellular signaling processes and often producing acute and chronic toxicities. Quinones are a well-known class of electrophilic species. Many natural products contain quinones as active constituents, and the quinone moiety exists in a number of chemotherapeutic agents. Quinones are also frequently formed as electrophilic metabolites from a variety of xeno- and endobiotics. Hydroquinone (HQ) is present in the environment from various sources, and it is also a known metabolite of benzene. HQ is converted in the body to 1,4-benzoquinone, which subsequently gives rise to hematotoxic and nephrotoxic quinone–thioether metabolites. The toxicity of these metabolites is dependent upon their ability to arylate proteins and to produce oxidative stress. Protein tertiary structure and protein amino acid sequence combine to determine which proteins are targets of these electrophilic quinone–thioether metabolites. We have used cytochrome c and model peptides to view adduction profiles of quinone–thioether metabolites, and have determined by MALDI-TOF analysis that these electrophiles target specific residues within these model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Monks, T.J. (2006) Introduction. Drug Metab Rev 38, 599–600.

    Article  PubMed  Google Scholar 

  2. Brouwers, O., Teerlink, T., van Bezu, J., Barto, R., Stehouwer, C., and Schalkwijk, C. (2007) Methylglyoxal and methylglyoxal-arginine adducts do not directly inhibit endothelial nitric oxide synthase. Ann. N. Y. Acad. Sci. 1126, 231–234.

    Article  PubMed  Google Scholar 

  3. Kankova, K. (2008) Diabetic threesome (hyperglycaemia, renal function and nutrition) and advanced glycation end products: evidence for the multiple-hit agent?, Proc. Nutr. Soc. 67, 60–74.

    Article  PubMed  Google Scholar 

  4. Carbone, D.L., Doorn, J.A., Kiebler, Z., and Petersen, D.R. (2005) Cysteine modification by lipid peroxidation products inhibits protein disulfide isomerase. Chem. Res. Toxicol. 18, 1324–1331.

    Article  CAS  PubMed  Google Scholar 

  5. Sampey, B.P., Carbone, D.L., Doorn, J.A., Drechsel, D.A., and Petersen, D.R. (2007) 4-Hydroxy-2-nonenal adduction of extracellular signal-regulated kinase (Erk) and the inhibition of hepatocyte Erk-Est-like protein-1-activating protein-1 signal transduction. Mol. Pharmacol. 71, 871–883.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson, W.B., Board, P.G., and Anders, M.W. (2004) Glutathione transferase zeta-catalyzed bioactivation of dichloroacetic acid: reaction of glyoxylate with amino acid nucleophiles. Chem. Res. Toxicol. 17, 650–662.

    Article  CAS  PubMed  Google Scholar 

  7. Go, Y.M., Halvey, P.J., Hansen, J.M., Reed, M., Pohl, J., and Jones, D.P. (2007) Reactive aldehyde modification of thioredoxin-1 activates early steps of inflammation and cell adhesion. Am. J. Pathol. 171, 1670–1681.

    Article  CAS  PubMed  Google Scholar 

  8. Luo, J., Hill, B.G., Gu, Y., Cai, J., Srivastava, S., Bhatnagar, A., and Prabhu, S.D. (2007) Mechanisms of acrolein-induced myocardial dysfunction: implications for environmental and endogenous aldehyde exposure. Am. J. Physiol. Heart. Circ. Physiol. 293, H3673–3684.

    Article  CAS  PubMed  Google Scholar 

  9. Baillie, T.A. (2006) Future of toxicology-metabolic activation and drug design: challenges and opportunities in chemical toxicology. Chem. Res. Toxicol. 19, 889–893.

    Article  CAS  PubMed  Google Scholar 

  10. Ross, D. (2000) The role of metabolism and specific metabolites in benzene-induced toxicity: evidence and issues. J. Toxicol. Environ. Health A 61, 357–372.

    Article  CAS  PubMed  Google Scholar 

  11. Pagano, G. (2002) Redox-modulated xenobiotic action and ROS formation: a mirror or a window? Hum. Exp. Toxicol. 21, 77–81.

    Article  CAS  PubMed  Google Scholar 

  12. Bolton, J.L., Trush, M.A., Penning, T.M., Dryhurst, G., and Monks, T.J. (2000) Role of quinones in toxicology. Chem. Res. Toxicol. 13, 135–160.

    Article  CAS  PubMed  Google Scholar 

  13. Verrax, J., Delvaux, M., Beghein, N., Taper, H., Gallez, B., and Buc Calderon, P. (2005) Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study. Free Radic. Res. 39, 649–657.

    Article  CAS  PubMed  Google Scholar 

  14. Ruiz-Ramos, R., Cebrian, M.E., and Garrido, E. (2005) Benzoquinone activates the ERK/MAPK signaling pathway via ROS production in HL-60 cells. Toxicology 209, 279–287.

    Article  CAS  PubMed  Google Scholar 

  15. Person, M.D., Mason, D.E., Liebler, D.C., Monks, T.J., and Lau, S.S. (2005) Alkylation of cytochrome c by (glutathion-S-yl)-1,4-benzoquinone and iodoacetamide demonstrates compound-dependent site specificity. Chem. Res. Toxicol. 18, 41–50.

    Article  CAS  PubMed  Google Scholar 

  16. Lindsey, R.H., Jr., Bender, R.P., and Osheroff, N. (2005) Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison. Chem. Res. Toxicol. 18, 761–770.

    Article  CAS  PubMed  Google Scholar 

  17. Lau, S.S., Hill, B.A., Highet, R.J., and Monks, T.J. (1988) Sequential oxidation and glutathione addition to 1,4-benzoquinone: correlation of toxicity with increased glutathione substitution. Mol. Pharmacol. 34, 829–836.

    CAS  PubMed  Google Scholar 

  18. Peters, M.M., Jones, T.W., Monks, T.J., and Lau, S.S. (1997) Cytotoxicity and cell-proliferation induced by the nephrocarcinogen hydroquinone and its nephrotoxic metabolite 2,3,5-(tris-glutathion-S-yl)hydroquinone. Carcinogenesis 18, 2393–2401.

    Article  CAS  PubMed  Google Scholar 

  19. Kleiner, H.E., Jones, T.W., Monks, T.J., and Lau, S.S. (1998) Immunochemical analysis of quinol–thioether-derived covalent protein adducts in rodent species sensitive and resistant to quinol–thioether-mediated nephrotoxicity. Chem. Res. Toxicol. 11, 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  20. Yoon, H.S., Monks, T.J., Walker, C.L., and Lau, S.S. (2001) Transformation of kidney epithelial cells by a quinol thioether via inactivation of the tuberous sclerosis-2 tumor suppressor gene. Mol. Carcinog. 31, 37–45.

    Article  CAS  PubMed  Google Scholar 

  21. Kussmann, M., Lassing, U., Sturmer, C.A., Przybylski, M., and Roepstorff, P. (1997) Matrix-assisted laser desorption/ionization mass spectrometric peptide mapping of the neural cell adhesion protein neurolin purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis or acidic precipitation. J. Mass Spectrom. 32, 483–493.

    Article  CAS  PubMed  Google Scholar 

  22. Voyager. (2004) Voyager Biospectrometry Workstation Training, Applied Biosystems, Forester City, CA.

    Google Scholar 

  23. Stewart, B.J., Doorn, J.A., and Petersen, D.R. (2007) Residue-specific adduction of tubulin by 4-hydroxynonenal and 4-oxononenal causes cross-linking and inhibits ­polymerization. Chem. Res. Toxicol. 20, 1111–1119.

    Article  CAS  PubMed  Google Scholar 

  24. Fisher, A.A., Labenski, M.T., Malladi, S., Gokhale, V., Bowen, M.E., Milleron, R.S., Bratton, S.B., Monks, T.J., and Lau, S.S. (2007) Quinone electrophiles selectively adduct “electrophile binding motifs” within cytochrome c. Biochemistry 46, 11090–11100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by GM070890 (SSL) and ES07091 (AAF). The authors acknowledge the support of the P30 ES06694 Southwest Environmental Health Sciences Center, in particular the Arizona Proteomics Consortium (APC). Special thanks go to Dr. George Tsaprailis, Director of the APC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serrine S. Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fisher, A.A., Labenski, M.T., Monks, T.J., Lau, S.S. (2011). Utilization of MALDI-TOF to Determine Chemical-Protein Adduct Formation In Vitro . In: Gautier, JC. (eds) Drug Safety Evaluation. Methods in Molecular Biology, vol 691. Humana Press. https://doi.org/10.1007/978-1-60761-849-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-849-2_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-186-8

  • Online ISBN: 978-1-60761-849-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics