Skip to main content

Clearing Up the Signal: Spectral Imaging and Linear Unmixing in Fluorescence Microscopy

  • Protocol
  • First Online:
Confocal Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1075))

Abstract

The ongoing progress in fluorescence labeling and in microscope instrumentation allows the generation and the imaging of complex biological samples that contain increasing numbers of fluorophores. For the correct quantitative analysis of datasets with multiple fluorescence channels, it is essential that the signals of the different fluorophores are reliably separated. Due to the width of fluorescence spectra, this cannot always be achieved using the fluorescence filters in the microscope. In such cases spectral imaging of the fluorescence data and subsequent linear unmixing allows the separation even of highly overlapping fluorophores into pure signals. In this chapter, the problems of fluorescence cross talk are defined, the concept of spectral imaging and separation by linear unmixing is described, and an overview of the microscope types suitable for spectral imaging are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300(5616):87–91

    Article  CAS  PubMed  Google Scholar 

  2. Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol Suppl 5(9):S1–S7

    Google Scholar 

  3. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21(5):539–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zhang J et al (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3(12):906–918

    Article  CAS  PubMed  Google Scholar 

  5. Schrock E et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273(5274):494–497

    Article  CAS  PubMed  Google Scholar 

  6. Tsurui H et al (2000) Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition. J Histochem Cytochem 48(5):653–662

    Article  CAS  PubMed  Google Scholar 

  7. Lansford R, Bearman G, Fraser SE (2001) Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J Biomed Opt 6(3):311–318

    Article  CAS  PubMed  Google Scholar 

  8. Dickinson ME et al (2001) Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31(6):1272, 1274–6, 1278

    CAS  PubMed  Google Scholar 

  9. Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2(12):910–919

    Article  CAS  PubMed  Google Scholar 

  10. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12(4):368–375

    Article  CAS  PubMed  Google Scholar 

  11. Garini Y et al (1999) Signal to noise analysis of multiple color fluorescence imaging microscopy. Cytometry 35(3):214–226

    Article  CAS  PubMed  Google Scholar 

  12. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  CAS  PubMed  Google Scholar 

  13. Landgrebe D (2002) Hyperspectral image data analysis as a high dimensional signal processing problem. IEEE Sig Proc Mag 19(1):17–28

    Google Scholar 

  14. Keshawa N, Mustard JF (2002) Spectral unmixing. IEEE Sig Proc Mag 19(1):44–57

    Article  Google Scholar 

  15. Hiraoka Y, Shimi T, Haraguchi T (2002) Multispectral imaging fluorescence microscopy for living cells. Cell Struct Funct 27(5):367–374

    Article  PubMed  Google Scholar 

  16. Wouters FS, Verveer PJ, Bastiaens PIH (2001) Imaging biochemistry inside cells. Trends Cell Biol 11:203–211

    Article  CAS  PubMed  Google Scholar 

  17. Zimmermann T, Siegert F (1998) Simultaneous detection of two GFP spectral mutants during in vivo confocal microscopy of migrating Dictyostelium cells. Biotechniques 24(3):458–461

    CAS  PubMed  Google Scholar 

  18. Olschewski F (2002) Living colors. Imaging & Microscopy 4(2):22–24

    Google Scholar 

  19. Neher RA et al (2009) Blind source separation techniques for the decomposition of multiply labeled fluorescence images. Biophys J 96(9):3791–3800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Castleman KR (1993) Color compensation for digitized FISH images. Bioimaging 1:159–165

    Article  Google Scholar 

  21. Castleman KR (1994) Digital image color compensation with unequal integration periods. Bioimaging 2:160–162

    Article  Google Scholar 

  22. Zimmermann T, Rietdorf J, Pepperkok R (2003) Spectral imaging and its applications in live cell microscopy. FEBS Lett 246:87–92

    Article  Google Scholar 

  23. Shirakawa H, Miyazaki S (2004) Blind spectral decomposition of single-cell fluorescence by parallel factor analysis. Biophys J 86(3):1739–1752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy, 95th edn. Advances in biochemical engineering/biotechnology. pp 245–265

    Google Scholar 

  25. Zimmermann T (2005) Spectral imaging techniques for fluorescence microscopy. In: Stephens D (ed) Cell imaging. Scion Publishing Limited, Oxfordshire, pp 95–118

    Google Scholar 

  26. Rost FWD (1995) Autofluorescence in plants, fungi and bacteria. In: Rost FWD (ed) Fluorescence microscopy. Cambridge University Press, New York, pp 16–39

    Google Scholar 

  27. Berg RH (2004) Evaluation of spectral imaging for plant cell analysis. J Microsc 214(Pt 2):174–181

    Article  CAS  PubMed  Google Scholar 

  28. O’Toole PJ et al (2004) Use of spectral unmixing and FRET to study GFP and nile red in Nicotiana bethamiana leaf epidermal cells. Imag Microsc 6(2):28–29

    Google Scholar 

  29. Nadrigny F et al (2006) Detecting fluorescent protein expression and co-localisation on single secretory vesicles with linear spectral unmixing. Eur Biophys J 35(6):533–547

    Article  CAS  PubMed  Google Scholar 

  30. Lenz JC et al (2002) Ca2+-controlled competitive diacylglycerol binding of protein kinase C isoenzymes in living cells. J Cell Biol 159(2):291–302

    Article  CAS  PubMed  Google Scholar 

  31. Gu Y et al (2004) Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J Microsc 215(Pt 2):162–173

    Article  CAS  PubMed  Google Scholar 

  32. Sturmey RG, O’Toole PJ, Leese HJ (2006) Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 132(6):829–837

    Article  CAS  PubMed  Google Scholar 

  33. Dinant C et al (2008) Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. J Microsc 231(Pt 1):97–104

    Article  CAS  PubMed  Google Scholar 

  34. Amiri H, Schultz G, Schaefer M (2003) FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 33(5–6):463–470

    Article  CAS  PubMed  Google Scholar 

  35. Thaler C, Vogel SS (2006) Quantitative linear unmixing of CFP and YFP from spectral images acquired with two-photon excitation. Cytometry A 69(8):904–911

    Article  PubMed  Google Scholar 

  36. Domingo B et al (2007) Imaging FRET standards by steady-state fluorescence and lifetime methods. Microsc Res Tech 70(12):1010–1021

    Article  CAS  PubMed  Google Scholar 

  37. Megias D et al (2009) Novel lambda FRET spectral confocal microscopy imaging method. Microsc Res Tech 72(1):1–11

    Article  PubMed  Google Scholar 

  38. Tomosugi W et al (2009) An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nat Methods 6(5):351–353

    Article  CAS  PubMed  Google Scholar 

  39. Zimmermann T et al (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett 531(2):245–249

    Article  CAS  PubMed  Google Scholar 

  40. Schultz C et al (2005) Multiparameter imaging for the analysis of intracellular signaling. Chembiochem 6(8):1323–1330

    Article  CAS  PubMed  Google Scholar 

  41. Piljic A, Schultz C (2008) Simultaneous recording of multiple cellular events by FRET. ACS Chem Biol 3(3):156–160

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zimmermann, T., Marrison, J., Hogg, K., O’Toole, P. (2014). Clearing Up the Signal: Spectral Imaging and Linear Unmixing in Fluorescence Microscopy. In: Paddock, S. (eds) Confocal Microscopy. Methods in Molecular Biology, vol 1075. Humana Press, New York, NY. https://doi.org/10.1007/978-1-60761-847-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-847-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-58829-351-0

  • Online ISBN: 978-1-60761-847-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics