Skip to main content

Large-Scale Integration of MicroRNA and Gene Expression Data for Identification of Enriched MicroRNA–mRNA Associations in Biological Systems

  • Protocol
  • First Online:
MicroRNAs and the Immune System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 667))

Abstract

The discovery of microRNAs (miRNAs) revealed a hidden layer of gene regulation that is able to integrate multiple genes into biologically meaningful networks. A number of computational prediction programs have been developed to identify putative miRNA targets. Collectively, the miRNAs that have been discovered so far have the potential to target over 60% of genes in our genome. A minimum of six consecutive nucleotides in the 5′-seed (nucleotides 2–8) in the miRNA must bind through complimentary base pairing to the 3′-untranslated (3′-UTRs) of target genes. Given the small sequence match required, a given miRNA has the potential to target hundreds of genes and a given mRNA can have 0–50 miRNA binding sites. The low-throughput nature of the query design (gene by gene or miRNA by miRNA) and a fairly high rate of false positives and negatives uncovered by the limited number of functional studies remain as the major limitations. Programs that integrate genome-wide gene and miRNA expression data determined by microarray and/or next-generation sequencing (NGS) technologies with the publicly available target prediction algorithms are extremely valuable on two fronts. First, they allow the investigator to fully capitalize on all the data generated to reveal new genes and pathways underlying the biological process under study. Second, these programs allow the investigator to lift a small network of genes they are currently following into a larger network through the integrative properties of miRNAs. In this chapter, we discuss the latest methodologies for determining genome-wide miRNA and gene expression changes and three programs (Sigterms, CORNA, and MMIA) that allow the investigator to generate short lists of enriched miRNA:target mRNA candidates for large-scale miRNA:target mRNA validation. These efforts are essential for determining false positive and negative rates of existing algorithms and refining our knowledge on the rules of miRNA–mRNA relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freidman, R.C., Farh, K.K., Burge, C.B., and Bartel, D. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92–105.

    Article  Google Scholar 

  2. Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanisms, and function. Cell 116(2), 281–97.

    Article  PubMed  CAS  Google Scholar 

  3. Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004) Human Argonaute 2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 185–97.

    Article  PubMed  CAS  Google Scholar 

  4. Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO 20(23), 6877–88.

    Article  CAS  Google Scholar 

  5. Song, J.J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–7.

    Article  PubMed  CAS  Google Scholar 

  6. Olsen, P. H. and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216, 671–80.

    Article  PubMed  CAS  Google Scholar 

  7. Bartel, D.P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–33. Review.

    Article  PubMed  CAS  Google Scholar 

  8. Creighton, C.J., Reid, J.G., and Gunaratne, P.H. (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10(5), 490–97.

    Article  PubMed  CAS  Google Scholar 

  9. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–70.

    Article  PubMed  CAS  Google Scholar 

  10. Pariset, L., Chillemi, G., Bongiorni, S., Spica, V.R., and Valentini, A. (2009) Microarrays and high-throughput transcriptomic analysis in species with incomplete availability of genomic sequences. N Biotechnol 25(5), 272–9.

    Article  PubMed  CAS  Google Scholar 

  11. NCBI microarray data repository Gene Expression Omnibus (Geo), Accessed on August 26, 2009 at http://www.ncbi.nlm.nih.gov/geo/.

  12. Affymetrix GeneChip, Accessed on August 27, 2009 at http://www.affymetrix.com.

  13. Agilent chip, Accessed on August 31, 2007 at http://www.agilent.com.

  14. Nimblegen, Accessed on August 28, 2009 at http://www.nimblegen.com/.

  15. CombiMatrix, Accessed on August 28, 2009 at http://www.combimatrix.com.

  16. Illumina bead array, Accessed on August 27, 2009 at http://www.illumina.com.

  17. Fan, J.B., Oliphant, A., Shen, R. et al. (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68, 69–78.

    Article  PubMed  CAS  Google Scholar 

  18. Shingara, J., Keiger, K., Shelton, J. et al. (2005) An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 11, 1461–70.

    Article  PubMed  CAS  Google Scholar 

  19. Yin, J.Q., Zhao, R.C., and Morris, K.V. (2008) Profiling microRNA expression with microarrays. Trends Biotechnol 26(2), 70–6.

    Article  PubMed  CAS  Google Scholar 

  20. Lockhart, D.J., Brown, E.L., Wong, G.G., Chee, M.S., and Gingeras, T.R. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14, 1675–80.

    Article  PubMed  CAS  Google Scholar 

  21. Prosnyak, M.I., Veselovskaya, S.I., Myasnikov, V.A. et al. (1994) Substitution of 2-aminoadenine and 5-methylcytosine for adenine and cytosine in hybridization probes increases the sensitivity of DNA fingerprinting. Genomics 21, 490–94.

    Article  PubMed  CAS  Google Scholar 

  22. Rampal, J.B., ed. (2001) DNA arrays: methods and protocols. In Methods in Molecular Biology, Vol. 170. Humana Press, Totowa.

    Google Scholar 

  23. Kumar, P., Singh, S.K., Koshkin, A.A., Rajwanshi, V.K., Meldgaard, M., and Wengel, J. (1998) The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 8(16), 2219–22.

    Article  PubMed  CAS  Google Scholar 

  24. Arora, A., Kaur, H., Wenger, J., and Maiti, S. (2008) Effect of locked nucleic acid (LNA) modification on hybridization kinetics of DNA duplex. Nucleic Acids Symp Ser 52, 417–18.

    Article  CAS  Google Scholar 

  25. Agilent human, mouse, and rat miRNA microarrays product note. Agilent Technologies, Accessed on August 27, 2009 at http://www.home.agilent.com.

  26. Exiqon LNA microarrays, Accessed on August 29, 2009 at http://www.exiqon.com.

  27. Invitrogen, Accessed on August 28, 2009 at http://www.invitrogen.com.

  28. LC Sciences, Accessed on August 30, 2009 at http://www.lcsciences.com.

  29. Gao, X., Le Proust, E., Zhang, H. et al. (2001) Flexible DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res 29, 4744–50.

    Article  PubMed  CAS  Google Scholar 

  30. The institute for genomic research, Accessed on August 29, 2004 at http://www.tigr.org/.

  31. Sanger, F., NIcklen, S., and Coulson, S. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–67.

    Article  PubMed  CAS  Google Scholar 

  32. Maxam, A.M. and Gilbert, W. (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74, 560–4.

    Article  PubMed  CAS  Google Scholar 

  33. Ansorge, W.J. (2009) Next-generation DNA sequencing techniques. N Biotechnol 25(4), 195–203. Review.

    Article  PubMed  CAS  Google Scholar 

  34. The 454 genome sequencer FLX instrument (Roche Applied Science), Accessed on August 28, 2009 at http://www.454.com/.

  35. Mardis, E.R. (2008) Next-generation DNA sequencing. Annu Rev Genomics Hum Genet 8, 387–402.

    Article  Google Scholar 

  36. The Illumina (Solexa) Genome Analyzer, Accessed on August 30, 2009 at http://www.illumina.com/.

  37. The Applied Biosystems ABI SOLiD system, Accessed on August 30, 2009 at http://www3.appliedbiosystems.com/.

  38. Helicos Biosciences Corporation, Accessed on August 28, 2009 at http://www.helicosbio.com/.

  39. Visigen Biotechnologies Inc, Accessed on August 30, 2009 at http://visigenbio.com/.

  40. Pacific Biosciences, Accessed on August 28, 2009 at http://www.pacificbiosciences.com/index.php.

  41. Sequenom Inc, Accessed on August 28, 2009 at http://www.sequenom.com.

  42. Oxford Nanopore Technologies, UK, Accessed on August 28, 2009 at http://www.nanoporetech.com/.

  43. BioNanomatrix, Accessed on August 28, 2009 at http://bionanomatrix.com/.

  44. Complete Genomics company, Accessed on August 28, 2009 at http://www.completegenomics.com/.

  45. Illumina Inc, Accessed on August 28, 2009 at http://www.illumina.com/downloads/rnaDGESmallRNA_Datasheet.pdf.

  46. Reid, J.G., Nagaraja, A.K., Lynn, F.C. et al. (2008) Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5′-seed/cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genome Res 18(10), 1571–81.

    Article  PubMed  CAS  Google Scholar 

  47. Creighton, C.J., Nagaraja, A.K., Hanash, S.M., Matzuk, M.M., and Gunaratne, P.H. (2008) A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA 14(11), 2290–6.

    Article  PubMed  CAS  Google Scholar 

  48. Berezikov, E., Plasterk, R.H.A., and Cuppen, E. (2002) GENOTRACE: cDNA-based local GENOme assembly from TRACE archives. Bioinformatics 18(10), 1396–97.

    Article  PubMed  CAS  Google Scholar 

  49. Zamore, P. and Du, T. (2005) microPrimer: the biogenesis and function of microRNA. Development 132, 4645–52.

    Article  PubMed  Google Scholar 

  50. Vienna package, Accessed on August 29, 2009 at http://www.tbi.univie.ac.at/RNA/.

  51. Ambros, V., Bartel, B., Bartel, D.P. et al. (2003) A uniform system for microRNA annotation. RNA 9(3), 277–9.

    Article  PubMed  CAS  Google Scholar 

  52. Mathews, D.H., Sabina, J., Zuker, M., and Turner, D.H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–40.

    Article  PubMed  CAS  Google Scholar 

  53. PicTar algorithm, Accessed on August 27, 2009 at http://pictar.bio.nyu.edu.

  54. Krek, A., Grun, D., Poy, M.N. et al. (2005) Combinatorial microRNA target predictions. Nat Genet 37, 495–500.

    Article  PubMed  CAS  Google Scholar 

  55. TargetScan algorithm, Accessed on August 29, 2009 at http://www.targetscan.org.

  56. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15–20.

    Article  PubMed  CAS  Google Scholar 

  57. miRanda algorithm, Accessed on August 28, 2009 at http://www.microrna.org.

  58. John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2004) microRNA target detection. PLoS Biol 2(11), 363.

    Article  Google Scholar 

  59. Lall, S., Grun, D., Krek, A. et al. (2006). A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16, 460–71.

    Article  PubMed  CAS  Google Scholar 

  60. Betel, D., Wilson, M., Gabow, A., Marks, D.S., and Sander, C. (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36, 149–53.

    Article  Google Scholar 

  61. The PITA algorithm, Accessed on August 30, 2009 at http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html.

  62. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E. (2007). The role of site accessibility in microRNA target recognition. Nat Genet 39, 1278–84.

    Article  PubMed  CAS  Google Scholar 

  63. Wu, X. and Watson, M. (2009) CORNA: testing gene lists for regulation by microRNAs. Bioinformatics 25(6), 832–3.

    Article  PubMed  CAS  Google Scholar 

  64. The R project for statistical computing, Accessed on August, 27, 2009 at http://www.r-project.org.

  65. Griffiths-Jones, S., Saini, H.K., Dongen, S.V., and Enright, A.J. (2006) miRBase: tools for micro RNA genomics. Nucleic Acid Res 36, 154–8.

    Article  Google Scholar 

  66. Durinck, S., Morean, Y., Kasprzyk, A. et al. (2005) BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21(16), 3439–40.

    Article  PubMed  CAS  Google Scholar 

  67. Barrett, T., Suzek, T.C., Troup, D.B. et al. (2008) NCBI GEO: mining millions of expression profiles – database and tools. Nucleic Acids Res 33, 562–6.

    Article  Google Scholar 

  68. Kanehisa, M., Araki, M., Goto, S. et al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36, 480–4.

    Article  Google Scholar 

  69. Sigterms, Accessed on August 28, 2009 at http://sigterms.sourceforge.net.

  70. miRNA and mRNA Integrated Analysis (MMIA), Accessed on August 28, 2009 at http://129.79.233.81/∼MMIA/mmia_main.html.

  71. Karginov, F.V., Conaco, C., Xuan, Z. et al. (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104(49), 19291–6.

    Article  PubMed  CAS  Google Scholar 

  72. Ebert, M.S., Neilson, J.R., and Sharp, P.A. (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9), 721–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PHG and JBT are supported by a 1 R01 HL095382-01 grant. The authors would like to thank Gayani Rajapakse, Ana Hernandez, and Rajib Ghosh at University of Houston, Department of Biology and Biochemistry for their assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preethi H. Gunaratne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gunaratne, P.H., Creighton, C.J., Watson, M., Tennakoon, J.B. (2010). Large-Scale Integration of MicroRNA and Gene Expression Data for Identification of Enriched MicroRNA–mRNA Associations in Biological Systems. In: Monticelli, S. (eds) MicroRNAs and the Immune System. Methods in Molecular Biology, vol 667. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-811-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-811-9_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-810-2

  • Online ISBN: 978-1-60761-811-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics