Skip to main content

Monitoring MicroRNA Activity and Validating MicroRNA Targets by Reporter-Based Approaches

  • Protocol
  • First Online:
MicroRNAs and the Immune System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 667))

Abstract

An essential requirement for discovering microRNAs that may be relevant to an immune cell’s function is to identify the microRNAs that are active in the cell and the genes they target. As several chapters in this volume describe, there are a number of technologies available for profiling microRNA expression, including oligonucleotide array-based approaches, real-time PCR, and, now, deep-sequencing. A complementary approach to expression profiling is the use of a microRNA reporter vector for assaying microRNA activity. In their simplest form, these vectors are comprised of a reporter gene tethered to tandem repeats of a sequence that is complementary to a specific microRNA. This technology enables the activity of a microRNA to be detected, and at single-cell resolution, and provides a means to help identify microRNAs that may have a role in cell function. This is particularly relevant for studying microRNAs in the highly heterogeneous cellular network of the immune system. Reporter vectors have also proved useful for validating microRNA target sites and 3′ untranslated regions (UTR) that are under microRNA control. This chapter describes how to construct, produce, and use a reporter vector for assaying microRNA activity, and for validating a microRNA target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiao, C. and Rajewsky, K. (2009) MicroRNA control in the immune system: basic principles. Cell 136, 26–36.

    Article  PubMed  CAS  Google Scholar 

  2. Li, Q. J., Chau, J., Ebert, P. J., Sylvester, G., Min, H., Liu, G., Braich, R., Manoharan, M., Soutschek, J., Skare, P., Klein, L. O., Davis, M. M., and Chen, C. Z. (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–61.

    Article  PubMed  CAS  Google Scholar 

  3. Cobb, B. S., Hertweck, A., Smith, J., O’Connor, E., Graf, D., Cook, T., Smale, S. T., Sakaguchi, S., Livesey, F. J., Fisher, A. G., and Merkenschlager, M. (2006) A role for Dicer in immune regulation. J Exp Med 203, 2519–27.

    Article  PubMed  CAS  Google Scholar 

  4. Cobb, B. S., Nesterova, T. B., Thompson, E., Hertweck, A., O’Connor, E., Godwin, J., Wilson, C. B., Brockdorff, N., Fisher, A. G., Smale, S. T., and Merkenschlager, M. (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201, 1367–73.

    Article  PubMed  CAS  Google Scholar 

  5. Lu, L. F., Thai, T. H., Calado, D. P., Chaudhry, A., Kubo, M., Tanaka, K., Loeb, G. B., Lee, H., Yoshimura, A., Rajewsky, K., and Rudensky, A. Y. (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80–91.

    Article  PubMed  CAS  Google Scholar 

  6. Xiao, C., Calado, D. P., Galler, G., Thai, T. H., Patterson, H. C., Wang, J., Rajewsky, N., Bender, T. P., and Rajewsky, K. (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–59.

    Article  PubMed  CAS  Google Scholar 

  7. Monticelli, S., Ansel, K. M., Xiao, C., Socci, N. D., Krichevsky, A. M., Thai, T. H., Rajewsky, N., Marks, D. S., Sander, C., Rajewsky, K., Rao, A., and Kosik, K. S. (2005) MicroRNA profiling of the murine hematopoietic system. Genome Biol 6, R71.

    Article  PubMed  Google Scholar 

  8. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R. U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H. I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C. E., Nagle, J. W., Ju, J., Papavasiliou, F. N., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M., and Tuschl, T. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–14.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–6.

    Article  PubMed  CAS  Google Scholar 

  10. Brown, B. D., Gentner, B., Cantore, A., Colleoni, S., Amendola, M., Zingale, A., Baccarini, A., Lazzari, G., Galli, C., and Naldini, L. (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25, 1457–67.

    Article  PubMed  CAS  Google Scholar 

  11. Landthaler, M., Gaidatzis, D., Rothballer, A., Chen, P. Y., Soll, S. J., Dinic, L., Ojo, T., Hafner, M., Zavolan, M., and Tuschl, T. (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14, 2580–96.

    Article  PubMed  CAS  Google Scholar 

  12. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    Article  PubMed  CAS  Google Scholar 

  13. Mansfield, J. H., Harfe, B. D., Nissen, R., Obenauer, J., Srineel, J., Chaudhuri, A., Farzan-Kashani, R., Zuker, M., Pasquinelli, A. E., Ruvkun, G., Sharp, P. A., Tabin, C. J., and McManus, M. T. (2004) MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36, 1079–83.

    Article  PubMed  CAS  Google Scholar 

  14. Brown, B. D., Venneri, M. A., Zingale, A., Sergi Sergi, L., and Naldini, L. (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12, 585–91.

    Article  PubMed  CAS  Google Scholar 

  15. Cao, X., Pfaff, S. L., and Gage, F. H. (2007) A functional study of miR-124 in the developing neural tube. Genes Dev 21, 531–6.

    Article  PubMed  CAS  Google Scholar 

  16. Brennecke, J., Stark, A., Russell, R. B., and Cohen, S. M. (2005) Principles of microRNA-target recognition. PLoS Biol 3, e85.

    Article  PubMed  Google Scholar 

  17. Doench, J. G., Petersen, C. P., and Sharp, P. A. (2003) siRNAs can function as miRNAs. Genes Dev 17, 438–42.

    Article  PubMed  CAS  Google Scholar 

  18. Taganov, K. D., Boldin, M. P., Chang, K. J., and Baltimore, D. (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103, 12481–6.

    Article  PubMed  CAS  Google Scholar 

  19. Giraldez, A. J., Mishima, Y., Rihel, J., Grocock, R. J., Van Dongen, S., Inoue, K., Enright, A. J., and Schier, A. F. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–9.

    Article  PubMed  CAS  Google Scholar 

  20. O’Connell, R. M., Rao, D. S., Chaudhuri, A. A., Boldin, M. P., Taganov, K. D., Nicoll, J., Paquette, R. L., and Baltimore, D. (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205, 585–94.

    Article  PubMed  Google Scholar 

  21. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., and Johnson, J. M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–73.

    Article  PubMed  CAS  Google Scholar 

  22. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63.

    Article  PubMed  CAS  Google Scholar 

  23. Doench, J. G. and Sharp, P. A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18, 504–11.

    Article  PubMed  CAS  Google Scholar 

  24. Ebert, M. S., Neilson, J. R., and Sharp, P. A. (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4, 721–6.

    Article  PubMed  CAS  Google Scholar 

  25. Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B. D., Ponzoni, M., and Naldini, L. (2009) Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 6, 63–6.

    Article  PubMed  CAS  Google Scholar 

  26. Brown, B. D. and Naldini, L. (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10, 578–85.

    Article  PubMed  CAS  Google Scholar 

  27. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K. C., Stoffel, M., and Rajewsky, N. (2005) Combinatorial microRNA target predictions. Nat Genet 37, 495–500.

    Article  PubMed  CAS  Google Scholar 

  28. Amendola, M., Venneri, M. A., Biffi, A., Vigna, E., and Naldini, L. (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23, 108–16.

    Article  PubMed  CAS  Google Scholar 

  29. De Palma, M. and Naldini, L. (2002) Transduction of a gene expression cassette using advanced generation lentiviral vectors. Methods Enzymol 346, 514–29.

    Article  PubMed  Google Scholar 

  30. Follenzi, A. and Naldini, L. (2002) Generation of HIV-1 derived lentiviral vectors. Methods Enzymol 346, 454–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many of the protocols described here were developed in the Naldini laboratory (San Raffaele Scientific Institute, Milan, Italy) (29, 30), and we would like to thank members of the lab for their contributions. BDB is supported by the National Institutes for Health (NIH) Diabetes Pathfinder Award (DP2DK083052-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Baccarini, A., Brown, B.D. (2010). Monitoring MicroRNA Activity and Validating MicroRNA Targets by Reporter-Based Approaches. In: Monticelli, S. (eds) MicroRNAs and the Immune System. Methods in Molecular Biology, vol 667. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-811-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-811-9_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-810-2

  • Online ISBN: 978-1-60761-811-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics