Skip to main content

Systems Biology of Cell Behavior

  • Protocol
  • First Online:
Systems Biology in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 662))

Abstract

Systems Biology approaches to drug discovery largely focus on the increasing understanding of intracellular and cellular circuits, by computational representation of a molecular system followed by parameter validation against experimental data. This chapter outlines a universal approach to systems biology that allows the linking of intracellular molecular machinery and cellular activity. This procedure is achieved by applying mathematical modeling to molecular modules of a cell in the light of systems biology techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajasethupathy P, Vayttaden SJ, Bhalla US (2005) Systems modeling: a pathway to drug discovery. Curr Opin Chem Biol 9:400–406

    Article  CAS  PubMed  Google Scholar 

  2. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  CAS  PubMed  Google Scholar 

  3. Lazebnik Y (2004) Can a biologist fix a radio? – Or, what I learned while studying apoptosis, (Cancer Cell. 2002 Sep;2(3):179–82). Biochemistry (Mosc) 69:1403–1406

    Article  CAS  Google Scholar 

  4. Boogerd F, Bruggeman FJ, Hofmeyr J-HS, Westerhoff HV (2007) Systems biology: philosophical foundations. Elsevier Science

    Google Scholar 

  5. Schedrovitsky GP (1997) [Phylosophy. Science. Methodology.]

    Google Scholar 

  6. Tinbergen N (1969) [Animal behaviour], World

    Google Scholar 

  7. Aleksandrov VY (1975) [The behavior of cells and intracellular structures], Knowledge

    Google Scholar 

  8. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203

    Article  CAS  PubMed  Google Scholar 

  9. Ideker T, Winslow LR, Lauffenburger DA (2006) Bioengineering and systems biology. Ann Biomed Eng 34:1226–1233

    Article  PubMed  Google Scholar 

  10. Stelling J, Sauer U, Szallasi Z, Doyle FJ III, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685

    Article  CAS  PubMed  Google Scholar 

  11. Plato (1997) Complete works, Hackett Publishing Co, Inc, Indianapolis

    Google Scholar 

  12. Wood CR, Hennessey TM (2003) PPNDS is an agonist, not an antagonist, for the ATP receptor of Paramecium. J Exp Biol 206:627–636

    Article  CAS  PubMed  Google Scholar 

  13. Rajini PS, Krishnakumari MK, Majumder SK (1989) Cytotoxicity of certain organic solvents and organophosphorus insecticides to the ciliated protozoan Paramecium caudatum. Microbios 59:157–163

    CAS  PubMed  Google Scholar 

  14. Jennings HS (1906) Behavior of the lower organisms. Indiana University, Bloomington

    Book  Google Scholar 

  15. Seravin LN (1967) Motile systems of primary organisms. Science, Leningrad

    Google Scholar 

  16. Kotov NV, Bukharaeva EA (1977) [Paramecium reaction to electromagnetic oscillations], 2953–2977

    Google Scholar 

  17. Litvin VG, Samigullin DV, Kotov NV (1999) A study of the defensive acceleration reaction of Paramecium caudatum. Biofizika 44:296–302

    CAS  Google Scholar 

  18. Machemer H, Peyr Y (1977) Swimming sensory cells: electrical membrane parameters, receptor properties and motor control in ciliated Protozoa, Verh Dtsch Zool Ges, 86–110

    Google Scholar 

  19. Puter A (1900) Studien uber die Tigmotaxis bei Protisten. Arch Anat Physiol, 243–302

    Google Scholar 

  20. Dogel VA, Polyansky YI, Kheisin KM (1962) [General protozoology], Soviet Academy of Sciences

    Google Scholar 

  21. Vivier E (1962) Demonstration a laide de la microscopic electronigue de echanges cytoplasmiques lors de la conjugaison sher Paramecium caudatum. Comp Hend Soc Biol 156:1115–1116

    CAS  Google Scholar 

  22. Van Houten J (1992) Chemosensory transduction in eukaryotic microorganisms. Annu Rev Physiol 54:639–663

    Article  PubMed  Google Scholar 

  23. Dryl S (1970) Response of ciliate protozoa to external stimuli. Acta Protozool 7:325–333

    CAS  Google Scholar 

  24. Machemer H, Suguno K (1989) Electrophysiological control of reversed ciliary betting: a basis of motile behaviour in ciliated protozoa. Comp Biochem Physiol 94:365–374

    Article  Google Scholar 

  25. Statkevich P (1903) [Galvanotaxis and galvanotropism of animals. Galvanotaxis and galvanotropism of infusoria]

    Google Scholar 

  26. Eckert R, Brehm P (1979) Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng 8:353–383

    Article  CAS  PubMed  Google Scholar 

  27. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1, 4, 5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  CAS  PubMed  Google Scholar 

  28. Hagar RE, Burgstahler AD, Nathanson MH, Ehrlich BE (1998) Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature 396:81–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramos-Franco J, Fill M, Mignery GA (1998) Isoform-specific function of single inositol 1, 4, 5-trisphosphate receptor channels. Biophys J 75:834–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Valeyev NV, Downing AK, Skorinkin AI, Campbell ID, Kotov NV (2006) A calcium dependent de-adhesion mechanism regulates the direction and rate of cell migration: a mathematical model. In Silico Biol 6:545–572

    CAS  PubMed  Google Scholar 

  31. Li CY, Mao X, Wei L (2008) Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 4:e2

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ochi R, Gupte SA (2007) Ryanodine receptor: a novel therapeutic target in heart disease. Recent Pat Cardiovasc Drug Discov 2:110–118

    Article  CAS  PubMed  Google Scholar 

  33. Padmanabhan S, Lambert NA, Prasad BM (2008) Activity-dependent regulation of the dopamine transporter is mediated by Ca(2+)/calmodulin-dependent protein kinase signaling. Eur J Neurosci 28:2017–2027

    Article  PubMed  Google Scholar 

  34. Rushlow WJ, Seah C, Sutton LP, Bjelica A, Rajakumar N (2009) Antipsychotics affect multiple calcium calmodulin dependent proteins. Neuroscience 161(3):877–886

    Article  CAS  PubMed  Google Scholar 

  35. Zhang GQ, Zhu Z, Zhang W (2009) Inhibitory effect of antihypertensive drugs on calcineurin in cardiomyocytes. Am J Hypertens 22:132–136

    Article  CAS  PubMed  Google Scholar 

  36. Hook C, Hildebrand E (1979) Excitation of Paramecium. A model analysis. J Math Biology 8:197–214

    Article  Google Scholar 

  37. Valeyev NV, Bates DG, Heslop-Harrison P, Postlethwaite I, Kotov NV (2008) Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach. BMC Syst Biol 2:48

    Article  PubMed  PubMed Central  Google Scholar 

  38. Valeyev NV, Heslop-Harrison P, Postlethwaite I, Kotov NV, Bates DG (2008) Multiple calcium binding sites make calmodulin multifunctional. Mol Biosyst 4:66–73

    Article  CAS  PubMed  Google Scholar 

  39. Valeyev NV, Heslop-Harrison P, Postlethwaite I, Gizatullina AN, Kotov NV, Bates DG (2009) Crosstalk between G-protein and Ca2+ pathways switches intracellular cAMP levels. Mol Biosyst 5:43–51

    Article  CAS  PubMed  Google Scholar 

  40. Davydov DA, Litvin VG, Platov KV, Sadykov IK, Kotov NV (1997) [The analysis of adenylate cyclase system of the cell]. Struct Dyn Mol Syst 4:30–34

    Google Scholar 

  41. Kotov NV, Volchenko AM, Davydov DA, Kostyleva EK, Sadykov I, Platov KV (2000) Motor activity of Paramecium. Biofizika 45:514–519

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Valeyev, N.V., Bates, D.G., Umezawa, Y., Gizatullina, A.N., Kotov, N.V. (2010). Systems Biology of Cell Behavior. In: Yan, Q. (eds) Systems Biology in Drug Discovery and Development. Methods in Molecular Biology, vol 662. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-800-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-800-3_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-799-0

  • Online ISBN: 978-1-60761-800-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics