Skip to main content

Tutorial: Multivariate Statistical Treatment of Imaging Data for Clinical Biomarker Discovery

  • Protocol
  • First Online:
Mass Spectrometry Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 656))

Abstract

Cancer research is one of the most promising application areas for the new technology of MALDI tissue imaging. Cancerous tissue can easily be distinguished from healthy tissue by dramatically changed metabolism, growth, and apoptotic processes. Of even higher interest is the fact that MALDI imaging allows to unveil molecular differentiation undetectable by classical histological techniques. Thus, MALDI imaging has tremendous potential as a tool to characterize the therapeutic susceptibility of tumors in biopsies as well as to predict tumor progression in endpoint studies. However, some aspects are important to consider for a successful MALDI imaging-based cancer research. Cancer sections are usually very heterogeneous – different biochemical pathways can be active in individual tumor clones, at different development stages or in various tumor microenvironments. Understanding tissue at this level is only possible for experienced histopathologists working on high-resolution optical images. Therefore, the largest benefit from the use of MALDI imaging results in histopathology will arise if molecular images are related to classical high-resolution histological images in a simple way without the need to interpret mass spectra directly. Each MALDI imaging data set effectively provides information on hundreds of molecules and permits the generation of molecular images displaying the relative abundance of these molecules across the tissue. The interpretation of these in the histological context is a major challenge in terms of expert analysis time. This is true especially for clinical work with hundreds of tissue specimens to be analyzed by MALDI, interpreted, and compared. Therefore, a MALDI imaging workflow is described here that enables fast and unambiguous interpretation of the MALDI imaging data in the histological context. Preprocessing of the image data using statistical tools allows efficient and straightforward interpretation by the histopathologist. In this chapter, we explain the use of principal component analysis (PCA) and hierarchical clustering (HC) for the efficient interpretation of MALDI imaging data. We also outline how these methods can be used to compare specific disease states between patients in the search for biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walch, A., Rauser, S., Deininger, S.-O., Höfler, H. (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol, 130, 421–434.

    Article  PubMed  CAS  Google Scholar 

  2. Yanagisawa, K., Shyr, Y., Xu, B. J., Massion, P. P., Larsen, P. H., White, B. C., Roberts, J. R., Edgerton, M., Gonzalez, A., Nadaf, S., Moore, J. H., Caprioli, R. M., Carbone, D. P. (2003) Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet, 362, 433–439.

    Article  PubMed  CAS  Google Scholar 

  3. Cornett, D. S., Mobley, J. A., Dias, E. C., Andersson, M., Arteaga, C. L., Sanders, M. E., Caprioli, R. M. (2006) A novel histology-directed strategy for MALDI-MS tissue profiling that improves throughput and cellular specificity in human breast cancer. Mol Cell Proteomics, 5, 1975–1983.

    Article  PubMed  CAS  Google Scholar 

  4. Aoyagi, S., Kawashima, Y., Kudo, M. (2005) TOF-SIMS imaging technique with information entropy. Nucl Instrum Methods Phys Res Sect B, 232, 146–152.

    Article  CAS  Google Scholar 

  5. Lockyer, N. P., Vickerman, J. C. (2004) Progress in cellular analysis using ToF-SIMS. Appl Surf Sci, 231, 377–384.

    Google Scholar 

  6. Wagner, M. S., Castner, D. G. (2001) Characterization of adsorbed protein films by ToF SIMS with PCA. Langmuir, 17, 4649–4660.

    Article  CAS  Google Scholar 

  7. Deininger, S.-O., Ebert, M. P., Fütterer, A., Gerhard, M., Röcken, C. (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res, 7, 5230–5236

    Article  PubMed  CAS  Google Scholar 

  8. Yao, I., Sugiura, Y., Matsumoto, M., Setou, M. (2008) In situ proteomics with imaging mass spectrometry and principal component analysis in the Scrapper-knockout mouse brain. Proteomics, 8, 3692–3701.

    Article  PubMed  CAS  Google Scholar 

  9. McCombie, G., Staab, D., Stoeckli, M., Knochenmuss, R. (2005) Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis. Anal Chem, 77, 6118–6124.

    Article  PubMed  CAS  Google Scholar 

  10. Crecelius, A. C., Cornett, D. S., Caprioli, R. M., Williams, B., Dawant, B. M., Bodenheimer, B. (2005) Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom, 16, 1093–1099.

    Article  PubMed  CAS  Google Scholar 

  11. Schwamborn, K., Krieg, R. C., Reska, M., Jakse, G., Knuechel, R., Wellmann, A. (2007) Identifying prostate carcinoma by MALDI-imaging. Int J Mol Med, 20, 155–159.

    PubMed  CAS  Google Scholar 

  12. Chaurand, P., Schwartz, S. A., Billheimer, D., Xu, B. J., Crecelius, A., Caprioli, R. M. (2004) Integrating histology and imaging mass spectrometry. Anal Chem, 76, 1145–1155.

    Article  PubMed  CAS  Google Scholar 

  13. Efron, B., Halloran, E., Holmes, S., (1996) Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci U S A, 93, 13429–13434.

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz, S. A., Reyzer, M. L., Caprioli, R. M. (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom, 38, 699–708.

    Article  PubMed  CAS  Google Scholar 

  15. Sugiura, Y., Shimma S., Setou, M. (2006) Thin sectioning improves the peak intensity and signal-to-noise ratio in direct tissue mass spectrometry. J Mass Spectrom Soc Jpn, 54, 45–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Deininger, SO., Becker, M., Suckau, D. (2010). Tutorial: Multivariate Statistical Treatment of Imaging Data for Clinical Biomarker Discovery. In: Rubakhin, S., Sweedler, J. (eds) Mass Spectrometry Imaging. Methods in Molecular Biology, vol 656. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-746-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-746-4_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-745-7

  • Online ISBN: 978-1-60761-746-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics