Skip to main content

On Tissue Protein Identification Improvement by N-Terminal Peptide Derivatization

  • Protocol
  • First Online:
Mass Spectrometry Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 656))

Abstract

Identification of potential markers of a physiological stage (e.g., pathology) discovered using MALDI-MSI is an important step in the understanding of signaling pathways or for providing sets of diagnosis and prognosis markers for clinical applications. Classically, identification can be achieved by extraction from a piece of tissue and proteomics strategies. However, this induces loss of information especially for low-abundance proteins or proteins localized to a specific region of the tissue. In this respect, identification directly at the tissue level is an attractive alternative. Because the molecular charge states in MALDI are low, on tissue identification is possible using bottom-up MALDI-MSI strategies. Enzymatic digestion using an enzyme such as trypsin can be performed at the micro-scale level to generate peptide collections while avoiding these peptides to be delocalized. It is, therefore, possible to image proteins through the molecular images of their digested peptides. These peptides can also be used to retrieve information on protein sequences by performing MS/MS, although databank interrogation or de novo sequencing using MS/MS spectra does not always lead to a successful or confident identification because on tissue complexities render PMF data problematic. Identification can be improved by increasing MS/MS spectra quality and simplifying their interpretation. This can be achieved by derivatization of peptides. In fact, derivatization of peptides leads to increases in fragmentation yields and orients fragmentations toward a specific series of fragment ions. In this respect, N-terminal chemical derivatization has proven to be particularly efficient. N-terminal chemical derivatization of tryptic peptides has been developed to be performed at the tissue level after on tissue digestion. Specific focus is given to 4-sulfophenyl isothiocyanate (4-SPITC), 3-sulfobenzoic acid NHS ester (3-SBASE), and (N-succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) derivatizations. This provides a complete strategy for protein identification in a bottom-up MALDI-MSI approach and opens the way for novel biomarker identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambihapathy, K., Yalcin, T., Leung, H. W., Harrison, A. G. (1997) Pathways to immonium ions in the fragmentation of protonated peptides. J Mass Spectrom, 32, 209–215.

    Article  CAS  Google Scholar 

  2. Kaufmann, R., Kirsch, D., Spengler, B. (1994) Sequencing of Peptides in a time-of-flight mass spectrometer – evaluation of postsource decay following matrix-assisted laser-desorption ionization (MALDI). Int J Mass Spectrom Ion Processes, 131, 355–385.

    Article  CAS  Google Scholar 

  3. Yalcin, T., Csizmadia, I. G., Peterson, M. R., Harrison, A. G. (1996) The structure and fragmentation of B–n (n>=3) ions in peptide spectra. J Am Soc Mass Spectrom, 7, 233–242.

    Article  CAS  Google Scholar 

  4. Biemann, K. (1990) Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol, 193, 455–479.

    Article  PubMed  CAS  Google Scholar 

  5. Roth, K. D., Huang, Z. H., Sadagopan, N., Watson, J. T. (1998) Charge derivatization of peptides for analysis by mass spectrometry. Mass Spectrom Rev, 17, 255–274.

    Article  PubMed  CAS  Google Scholar 

  6. Keough, T., Youngquist, R. S., Lacey, M. P. (1999) A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc Natl Acad Sci U S A, 96, 7131–7136.

    Article  PubMed  CAS  Google Scholar 

  7. Keough, T., Lacey, M. P., Youngquist, R. S. (2000) Derivatization procedures to facilitate de novo sequencing of lysine-terminated tryptic peptides using postsource decay matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom, 14, 2348–2356.

    Article  PubMed  CAS  Google Scholar 

  8. Samyn, B., Debyser, G., Sergeant, K., Devreese, B., Van Beeumen, J. (2004) A case study of de novo sequence analysis of N-sulfonated peptides by MALDI TOF/TOF mass spectrometry. J Am Soc Mass Spectrom, 15, 1838–1852.

    Article  PubMed  CAS  Google Scholar 

  9. Keough, T., Youngquist, R. S., Lacey, M. P. (2003) Sulfonic acid derivatives for peptide sequencing by MALDI MS. Anal Chem, 75, 156A–165A.

    Article  PubMed  CAS  Google Scholar 

  10. Keough, T., Lacey, M. P., Strife, R. J. (2001) Atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry of sulfonic acid derivatized tryptic peptides. Rapid Commun Mass Spectrom, 15, 2227–2239.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, Y. H., Kim, M. S., Choie, W. S., Min, H. K., Lee, S. W. (2004) Highly informative proteome analysis by combining improved N-terminal sulfonation for de novo peptide sequencing and online capillary reverse-phase liquid chromatography/tandem mass spectrometry. Proteomics, 4, 1684–1694.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, Y. H., Han, H., Chang, S. B., Lee, S. W. (2004) Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability. Rapid Commun Mass Spectrom, 18, 3019–3027.

    Article  PubMed  CAS  Google Scholar 

  13. Gevaert, K., Demol, H., Martens, L., Hoorelbeke, B., Puype, M., Goethals, M., Van Damme, J., De Boeck, S., Vandekerckhove, J. (2001) Protein identification based on matrix assisted laser desorption/ionization-post source decay-mass spectrometry. Electrophoresis, 22, 1645–1651.

    Article  PubMed  CAS  Google Scholar 

  14. Marekov, L. N., Steinert, P. M. (2003) Charge derivatization by 4-sulfophenyl isothiocyanate enhances peptide sequencing by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom, 38, 373–377.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, D., Kalb, S. R., Cotter, R. J. (2004) Improved procedures for N-terminal sulfonation of peptides for matrix-assisted laser desorption/ionization post-source decay peptide sequencing. Rapid Commun Mass Spectrom, 18, 96–102.

    Article  PubMed  CAS  Google Scholar 

  16. Alley, W. R., Jr., Mechref, Y., Klouckova, I., Novotny, M. V. (2007) Improved collision-induced dissociation analysis of peptides by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry through 3-sulfobenzoic acid succinimidyl ester labeling. J Proteome Res, 6, 124–132.

    Article  PubMed  CAS  Google Scholar 

  17. Huang, Z. H., Wu, J., Roth, K. D., Yang, Y., Gage, D. A., Watson, J. T. (1997) A picomole-scale method for charge derivatization of peptides for sequence analysis by mass spectrometry. Anal Chem, 69, 137–144.

    Article  PubMed  CAS  Google Scholar 

  18. Franck, J., El Ayed, M., Wisztorski, M., Salzet, M., Fournier, I. (2009) On tissue N-terminal peptide derivatizations for enhancing proteins identification in bottom-up Imaging strategies. Anal Chem, 81, 8305–8317.

    Google Scholar 

  19. Lemaire, R., Tabet, J. C., Ducoroy, P., Hendra, J. B., Salzet, M., Fournier, I. (2006) Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem, 78, 809–819.

    Article  PubMed  CAS  Google Scholar 

  20. Lemaire, R., Wisztorski, M., Desmons, A., Tabet, J. C., Day, R., Salzet, M., Fournier, I. (2006) MALDI-MS direct tissue analysis of proteins: improving signal sensitivity using organic treatments. Anal Chem, 78, 7145–7153.

    Article  PubMed  CAS  Google Scholar 

  21. Seeley, E. H., Oppenheimer, S. R., Mi, D., Chaurand, P., Caprioli, R. M. (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom, 19, 1069–1077.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Franck, J., Ayed, M.E., Wisztorski, M., Salzet, M., Fournier, I. (2010). On Tissue Protein Identification Improvement by N-Terminal Peptide Derivatization. In: Rubakhin, S., Sweedler, J. (eds) Mass Spectrometry Imaging. Methods in Molecular Biology, vol 656. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-746-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-746-4_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-745-7

  • Online ISBN: 978-1-60761-746-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics