Skip to main content

Oxidative Stress and Beta Cell Dysfunction

  • Protocol
  • First Online:
Autoimmunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 900))

Abstract

Autoimmune Type 1 A Diabetes (T1D) is characterized by dependence on exogenous insulin consequential to the autoimmune attack and destruction of insulin-producing islet beta cells. Pancreatic islet cell inflammation, or insulitis, precedes beta cell death and T1D onset. In the insulitic lesion, innate immune cells produce chemokines and cytokines that recruit and activate adaptive immune cells (Eizirik D et al., Nat Rev Endocrinol 5:219–226, 2009). Locally produced cytokines not only increase immune surveillance of beta cells (Hanafusa T and Imagawa A, Ann NY Acad Sci 1150:297–299, 2008), but also cause beta cell dysfunction and decreased insulin secretion due to the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) by the beta cells. This, coupled to the high levels of ROS and RNS secreted by activated macrophages and the low antioxidant capacities of beta cells (Huurman VA, PLoS One 3:e2435, 2008; Schatz D, Pediatr Diabetes 5:72–79, 2004; Verge CF, Diabetes 44:1176–1179, 1995), implicates free radicals as important effectors in T1D pathogenesis (Eizirik D et al., Nat Rev Endocrinol 5:219–226, 2009; Hanafusa T and Imagawa A, Ann NY Acad Sci 1150:297–299, 2008; Eisenbarth GS and Jeffrey J, Arq Bras Endocrinol Metabol 52:146–155, 2008; Pietropaolo M et al., Pediatr Diabetes 6:184–192, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226

    Article  PubMed  CAS  Google Scholar 

  2. Hanafusa T, Imagawa A (2008) Insulitis in human type 1 diabetes. Ann N Y Acad Sci 1150:297–299

    Article  PubMed  Google Scholar 

  3. Eisenbarth GS, Jeffrey J (2008) The natural history of type 1A diabetes. Arq Bras Endocrinol Metabol 52:146–155

    Article  PubMed  Google Scholar 

  4. Pietropaolo M, Yu S, Libman IM, Pietropaolo SL, Riley K, LaPorte RE et al (2005) Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies. Pediatr Diabetes 6:184–192

    Article  PubMed  Google Scholar 

  5. Verge CF, Gianani R, Kawasaki E, Yu L, Pietropaolo M, Jackson RA et al (1996) Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45:926–933

    Article  PubMed  CAS  Google Scholar 

  6. Wang J, Miao D, Babu S, Yu J, Barker J, Klingensmith G et al (2007) Prevalence of autoantibody-negative diabetes is not rare at all ages and increases with older age and obesity. J Clin Endocrinol Metab 92:88–92

    Article  PubMed  CAS  Google Scholar 

  7. Huurman VA, Hilbrands R, Pinkse GG, Gillard P, Duinkerken G, van de Linde P et al (2008) Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS One 3:e2435

    Article  PubMed  Google Scholar 

  8. Schatz D, Cuthbertson D, Atkinson M, Salzler MC, Winter W, Muir A et al (2004) Preservation of C-peptide secretion in subjects at high risk of developing type 1 diabetes mellitus–a new surrogate measure of non-progression? Pediatr Diabetes 5:72–79

    Article  PubMed  Google Scholar 

  9. Verge CF, Gianani R, Yu L, Pietropaolo M, Smith T, Jackson RA et al (1995) Late progression to diabetes and evidence for chronic beta-cell autoimmunity in identical twins of patients with type I diabetes. Diabetes 44:1176–1179

    Article  PubMed  CAS  Google Scholar 

  10. Lenzen S, Brand FH, Panten U (1988) Structural requirements of alloxan and ninhydrin for glucokinase inhibition and of glucose for protection against inhibition. Br J Pharmacol 95:851–859

    Article  PubMed  CAS  Google Scholar 

  11. Lenzen S, Tiedge M, Panten U (1987) Glucokinase in pancreatic B-cells and its inhibition by alloxan. Acta Endocrinol (Copenh) 115:21–29

    CAS  Google Scholar 

  12. Lenzen S, Freytag S, Panten U (1988) Inhibition of glucokinase by alloxan through interaction with SH groups in the sugar-binding site of the enzyme. Mol Pharmacol 34:395–400

    PubMed  CAS  Google Scholar 

  13. Lenzen S, Munday R (1991) Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and a comparison with ninhydrin. Biochem Pharmacol 42:1385–1391

    Article  PubMed  CAS  Google Scholar 

  14. Lenzen S, Mirzaie-Petri M (1992) Inhibition of aconitase by alloxan and the differential modes of protection of glucose, 3-O-methylglucose, and mannoheptulose. Naunyn Schmiedebergs Arch Pharmacol 346:532–536

    Article  PubMed  CAS  Google Scholar 

  15. Grankvist K, Marklund S, Sehlin J, Täljedal I-B (1979) Superoxide dismutase, catalase and scavengers of hydroxyl radicals protect against toxic action of alloxan on pancreatic islet cells in vitro. Biochem J 182:17–25

    PubMed  CAS  Google Scholar 

  16. Grankvist K, Marklund SL, Taljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199:393–398

    PubMed  CAS  Google Scholar 

  17. Grankvist K, Marklund S, Taljedal IB (1981) Superoxide dismutase is a prophylactic against alloxan diabetes. Nature 294:158–160

    Article  PubMed  CAS  Google Scholar 

  18. Asplund K, Grankvist K, Marklund S, Taljedal IB (1984) Partial protection against streptozotocin-induced hyperglycaemia by superoxide dismutase linked to polyethylene glycol. Acta Endocrinol (Copenh) 107:390–394

    CAS  Google Scholar 

  19. Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radical Bio Med 20:463–466

    Article  CAS  Google Scholar 

  20. Tiedge M, Lortz S, Drinkgeer J, Lenzen S (1997) Relation between antioxidant enzyme gene-expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742

    Article  PubMed  CAS  Google Scholar 

  21. Tiedge M, Lortz S, Munday R, Lenzen S (1998) Complementary action of antioxidant enzymes in the protection of bioengineered insulin producing rinm5f cells against the toxicity of reactive oxygen species. Diabetes 47:1578–1585

    Article  PubMed  CAS  Google Scholar 

  22. Mathews CE, Leiter EH (1999) Constitutive differences in anti-oxidant defense status distinguish Alloxan Resistant (ALR/Lt) and Alloxan Susceptible (ALS/Lt) mice. Free Radical Bio Med 27:449–455

    Article  CAS  Google Scholar 

  23. Mathews CE, Leiter EH (1999) Resistance of ALR/Lt Islets to free radical mediated diabetogenic stress is inherited as a dominant trait. Diabetes 48:2189–2196

    Article  PubMed  CAS  Google Scholar 

  24. Mathews CE, Suarez-Pinzon WL, Baust JJ, Strynadka K, Leiter EH, Rabinovitch A (2005) Mechanisms Underlying Resistance of Pancreatic Islets from ALR/Lt Mice to Cytokine-Induced Destruction. J Immunol 175:1248–1256

    PubMed  CAS  Google Scholar 

  25. Chen H, Li X, Epstein PN (2005) MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity. Diabetes 54:1437–1446

    Article  PubMed  CAS  Google Scholar 

  26. Li X, Chen H, Epstein PN (2006) Metallothionein and catalase sensitize to diabetes in nonobese diabetic mice: reactive oxygen species may have a protective role in pancreatic beta-cells. Diabetes 55:1592–1604

    Article  PubMed  CAS  Google Scholar 

  27. Mathews CE, Graser RT, Savinov AY, Serreze DV, Leiter EH (2001) Unusual resistance of ALR/Lt beta cells to autoimmune destruction: Role for beta cell expressed resistance determinants. Proc Natl Acad Sci 98:235–240

    Article  PubMed  CAS  Google Scholar 

  28. Foulis AK, McGill M, Farquharson MA (1991) Insulitis in type 1 (insulin-dependent) diabetes mellitus in man–macrophages, lymphocytes, and interferon-gamma containing cells. J Pathol 165:97–103

    Article  PubMed  CAS  Google Scholar 

  29. Foulis AK (1996) The pathology of the endocrine pancreas in type 1 (insulin-dependent) diabetes mellitus. APMIS 104:161–167

    Article  PubMed  CAS  Google Scholar 

  30. Kroncke KD, Kolb-Bachofen V, Berschick B, Burkart V, Kolb H (1991) Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun 175:752–758

    Article  PubMed  CAS  Google Scholar 

  31. Schwizer RW, Leiter EH, Evans R (1984) Macrophage mediated cytotoxicity against cultured pancreatic islet cells. Transplantation 37:539–544

    Article  PubMed  CAS  Google Scholar 

  32. Sandler S, Eizirik DL, Sternesjo J, Welsh N (1994) Role of cytokines in regulation of pancreatic B-cell function. Biochem Soc Trans 22:26–30

    PubMed  CAS  Google Scholar 

  33. Corbett JA, McDaniel ML (1994) Reversibility of interleukin-1 beta-induced islet destruction and dysfunction by the inhibition of nitric oxide synthase. Biochem J 299(Pt 3):719–724

    PubMed  CAS  Google Scholar 

  34. Scarim AL, Heitmeier MR, Corbett JA (1997) Irreversible inhibition of metabolic function and islet destruction after a 36-hour exposure to interleukin-1beta. Endocrinology 138:5301–5307

    Article  PubMed  CAS  Google Scholar 

  35. Augstein P, Heinke P, Salzsieder E, Grimm R, Giebel J, Salzsieder C et al (2008) Dominance of cytokine- over FasL-induced impairment of the mitochondrial transmembrane potential (Deltapsim) in the pancreatic beta-cell line NIT-1. Diab Vasc Dis Res 5:198–204

    Article  PubMed  Google Scholar 

  36. Steer SA, Scarim AL, Chambers KT, Corbett JA (2005) Interleukin-1 Stimulates beta-Cell Necrosis and Release of the Immunological Adjuvant HMGB1. PLoS Med 3:e17

    Article  PubMed  Google Scholar 

  37. Hughes KJ, Chambers KT, Meares GP, Corbett JA (2009) Nitric oxides mediates a shift from early necrosis to late apoptosis in cytokine-treated {beta}-cells that is associated with irreversible DNA damage. Am J Physiol Endocrinol Metab 297:E1187–E1196

    Article  PubMed  CAS  Google Scholar 

  38. Rabinovitch A, Suarez WL, Thomas PD, Strynadka K, Simpson I (1992) Cytotoxic effects of cytokines on rat islets: evidence for involvement of free radicals and lipid peroxidation. Diabetologia 35:409–413

    Article  PubMed  CAS  Google Scholar 

  39. Rabinovitch A, Sumoski W, Rajotte RV, Warnock GL (1990) Cytotoxic effects of cytokines on human pancreatic islet cells in monolayer culture. J Clin Endocrinol Metab 71:152–156

    Article  PubMed  CAS  Google Scholar 

  40. Nerup J, Mandrup-Poulsen T, Helqvist S, Andersen HU, Pociot F, Reimers JI et al (1994) On the pathogenesis of IDDM. Diabetologia 37(Suppl 2):S82–S89

    Article  PubMed  Google Scholar 

  41. Corbett JA, McDaniel ML (1995) Intraislet release of interleukin 1 inhibits beta cell function by inducing beta cell expression of inducible nitric oxide synthase. J Exp Med 181:559–568

    Article  PubMed  CAS  Google Scholar 

  42. Rabinovitch A, Suarez-Pinzon WL, Sorensen O, Bleackley RC (1996) Inducible nitric oxide synthase (iNOS) in pancreatic islets of nonobese diabetic mice: identification of iNOS- expressing cells and relationships to cytokines expressed in the islets. Endocrinology 137:2093–2099

    Article  PubMed  CAS  Google Scholar 

  43. Rabinovitch A, Suarez-Pinzon W, El-Sheikh A, Sorensen O, Power RF (1996) Cytokine gene expression in pancreatic islet-infiltrating leukocytes of BB rats: expression of Th1 cytokines correlates with beta-cell destructive insulitis and IDDM. Diabetes 45:749–754

    Article  PubMed  CAS  Google Scholar 

  44. Mandrup-Poulsen T, Corbett JA, McDaniel ML, Nerup J (1993) What are the types and cellular sources of free radicals in the pathogenesis of type 1 (insulin-dependent) diabetes mellitus? Diabetologia 36:470–471

    Article  PubMed  CAS  Google Scholar 

  45. Corbett JA, Kwon G, Turk J, McDaniel ML (1993) IL-1 beta induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide. Biochemistry 32:13767–13770

    Article  PubMed  CAS  Google Scholar 

  46. Takamura T, Kato I, Kimura N, Nakazawa T, Yonekura H, Takasawa S et al (1998) Transgenic mice overexpressing type 2 nitric-oxide synthase in pancreatic beta cells develop insulin-dependent diabetes without insulitis. J Biol Chem 273:2493–2496

    Article  PubMed  CAS  Google Scholar 

  47. Oliveira HR, Verlengia R, Carvalho CR, Britto LR, Curi R, Carpinelli AR (2003) Pancreatic beta-cells express phagocyte-like NAD(P)H oxidase. Diabetes 52:1457–1463

    Article  PubMed  CAS  Google Scholar 

  48. Morgan D, Oliveira-Emilio HR, Keane D, Hirata AE, Santos da Rocha M, Bordin S et al (2007) Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 50:359–369

    Article  PubMed  CAS  Google Scholar 

  49. Newsholme P, Morgan D, Rebelato E, Oliveira-Emilio HC, Procopio J, Curi R et al (2009) Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia 52:2489–2498

    Article  PubMed  CAS  Google Scholar 

  50. Suarez-Pinzon WL, Strynadka K, Rabinovitch A (1996) Destruction of rat pancreatic islet beta-cells by cytokines involves the production of cytotoxic aldehydes. Endocrinology 137:5290–5296

    Article  PubMed  CAS  Google Scholar 

  51. Shen HM, Lin Y, Choksi S, Tran J, Jin T, Chang L et al (2004) Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol Cell Biol 24:5914–5922

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton E. Mathews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lightfoot, Y.L., Chen, J., Mathews, C.E. (2012). Oxidative Stress and Beta Cell Dysfunction. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Biology, vol 900. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-720-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-720-4_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-719-8

  • Online ISBN: 978-1-60761-720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics