Skip to main content

Genetic Screens to Identify Plant Stress Genes

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 639))

Abstract

A powerful means to learn about gene functions in a developmental or physiological context in an organism is to isolate the corresponding mutants with altered phenotypes. Diverse mutagenic agents, including chemical and biological, have been widely employed, and each comes with its own advantages and inconveniences. For Arabidopsis thaliana, whose genome sequence is publicly available, the reliance of reverse genetics to understand the relevant roles of genes particularly those coding for proteins in growth and development is now a common practice. Identifying multiple alleles at each locus is important because they can potentially reveal epistatic relationship in a signaling pathway or components belonging to a common signaling complex by their synergistic or even allele-specific enhancement of the phenotypic severity. In this article, we describe mutagenesis by using ethyl methanesulfonate (EMS) and transfer (T)-DNA-mediated insertion or activation tagging as applied to the most widely used genetic plant model A. thaliana. Also, we demonstrate the utility of several genetic screening approaches to dissect adaptive responses to various abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyer, J.S. (1982) Plant Productivity and Environment. Science 218, 443–48.

    Article  PubMed  CAS  Google Scholar 

  2. Flowers, T.J. (2004). Improving crop salt tolerance. J Exp Bot 55 307–319.

    Article  PubMed  CAS  Google Scholar 

  3. Vinocur, B and Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16,123–32.

    Article  PubMed  CAS  Google Scholar 

  4. Nakashima, K., Ito, Y., and Yamaguchi-Shinozaki, K. (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149, 88–95.

    Article  PubMed  CAS  Google Scholar 

  5. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247–273.

    Article  PubMed  CAS  Google Scholar 

  6. Alonso, J.M. and Ecker, J.R. (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7, 524–536.

    Article  PubMed  CAS  Google Scholar 

  7. Chinnusamy, V., Zhu, J., and Zhu, J.K. (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng (NY) 27, 141–177.

    Article  CAS  Google Scholar 

  8. Rédei, G.P. and Koncz, C. (1992) Classical mutagenesis. In Methods in Arabidopsis Research (C. Koncz, Chua, N.-H., Schell, J., eds.), World Scientific: Singapore, pp. 16–82.

    Google Scholar 

  9. Kim, Y., Schumaker, K.S., and Zhu, J.K. (2006) EMS mutagenesis of Arabidopsis. Methods Mol Biol 323, 101–103.

    PubMed  CAS  Google Scholar 

  10. Bancroft, I., Bhatt, A. M., Sjodin, C., Scofield, S., Jones, J. D., and Dean, C. (1992) Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol Gen Genet 233, 449–461.

    Article  PubMed  CAS  Google Scholar 

  11. Martienssen, R.A. (1998) Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci U S A 95, 2021–2026.

    Article  PubMed  CAS  Google Scholar 

  12. Wisman, E., Hartmann, U., Sagasser, M., Baumann, E., Palme, K., Hahlbrock, K., Saedler, H., and Weisshaar, B. (1998) Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci U S A 95, 12432–12437.

    Article  PubMed  CAS  Google Scholar 

  13. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G. P., and Schell, J. (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci U S A 86, 8467–8471.

    Article  PubMed  CAS  Google Scholar 

  14. Koncz, C., Nemeth, K., Redei, G.P., and Schell, J. (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol 20, 963–76.

    Article  PubMed  CAS  Google Scholar 

  15. Feldmann, K.A., Marks, M.D., Christianson, M.L., and Quatrano, R.S. (1989) A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243, 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  16. Azpiroz-Leehan, R. and Feldmann K.A. (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13, 152–156.

    Article  PubMed  CAS  Google Scholar 

  17. Tinland, B. and Hohn, B. (1995) Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome. Genet Eng (NY) 17, 209–229.

    CAS  Google Scholar 

  18. Hansen, G. and Chilton, M.D. (1999) Lessons in gene transfer to plants by a gifted microbe. Curr Top Microbiol Immunol 240, 21–57.

    PubMed  CAS  Google Scholar 

  19. Zupan, J., Muth, T.R., Draper, O., and Zambryski, P. (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23, 11–28.

    Article  PubMed  CAS  Google Scholar 

  20. Szabados, L., Kovacs, I., Oberschall, A., Abraham, E., Kerekes, I., Zsigmond, L., Nagy, R., Alvarado, M., Krasovskaja, I., Gal, M., Berente, A., Redei, G. P., and Haim, A. B., Koncz, C. (2002). Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32, 233–242.

    Article  PubMed  CAS  Google Scholar 

  21. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., et al., (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–637.

    Google Scholar 

  22. Rosso, M.G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., and Weisshaar, B. (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53, 247–259.

    Article  PubMed  CAS  Google Scholar 

  23. Li, Y., Rosso, M.G., Ulker, B., and Weisshaar, B. (2006) Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions. Genomics 87, 645–652.

    Article  PubMed  CAS  Google Scholar 

  24. Koncz, C., Martini, N., Szabados, L., Hrouda, M., Bachmair, A., and Schell, J. (1994) Specialized vectors for gene tagging and expression studies. In Plant Molecular Biology Manual (S.B. Gelvin, ed.), Kluwer Academic Publishers, pp. 1–22.

    Google Scholar 

  25. Alvarado, M.C., Zsigmond, L.M., Kovacs, I., Csépl, A., Koncz, C., and Szabados, L.M. (2004) Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. Plant Physiol 134, 18–27.

    Article  PubMed  CAS  Google Scholar 

  26. Walden, R., Fritze, K., Hayashi, H., Miklashevichs, E., Harling, H., and Schell, J. (1994) Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Mol Biol 26, 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  27. Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J. O., and Christensen, S. K. (2000) Activation tagging in Arabidopsis. Plant Physiol 122, 1003–1013.

    Article  PubMed  CAS  Google Scholar 

  28. Szabados, L. and Koncz, C. (2003) Identification of T-DNA insertions in Arabidopsis genes. In Genomics of Plants and Fungi, (H.J.B. R.A.Prade, ed.), Marcel Dekker Inc, New York, pp. 255–277.

    Google Scholar 

  29. Bechtold, N., Ellis, J., and Pelletier, G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris. 316, 1194–1199.

    CAS  Google Scholar 

  30. Bechtold, N. and Pelletier, G. (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82, 259–266.

    PubMed  CAS  Google Scholar 

  31. Bent, A.F. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124, 1540–1547.

    Article  PubMed  CAS  Google Scholar 

  32. Chinnusamy, V., Stevenson, B, Lee, B.H., and Zhu, J.K. (2002) Screening for gene regulation mutants by bioluminescence imaging. Sci STKE 140, 1–10.

    Google Scholar 

  33. Ishitani, M., Xiong, L., Stevenson, B., and Zhu, J.K. (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9, 1935–1949.

    Article  PubMed  CAS  Google Scholar 

  34. Ishitani, M., Xiong, L., Lee, H., Stevenson, B., and Zhu, J.K. (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10, 1151–1161.

    Article  PubMed  CAS  Google Scholar 

  35. Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B., and Zhu, J.K. (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 15, 912–924.

    Article  PubMed  CAS  Google Scholar 

  36. Zhu, J., Verslues, P.E., Zheng, X., Lee, B.H.m Zhan, X., Manabe, Y., Sokolchik, I., Zhu, Y., Dong, C. H., Zhu, J.K., Hasegawa, P. M., and Bressan, R. (2005) A HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci U S A 102, 9966–9971.

    Article  PubMed  CAS  Google Scholar 

  37. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J.K. (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  38. Foster, R. and Chua, N.H. (1999) An Arabidopsis mutant with deregulated ABA gene expression: implications for negative regulator function. Plant J 17, 363–372.

    Article  PubMed  CAS  Google Scholar 

  39. Grant, J.J., Chini, A., Basu, D., and Loake, G. J. (2003) Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Mol Plant Microbe Interact 16, 669–680.

    Article  PubMed  CAS  Google Scholar 

  40. Papdi, C., Abraham, E., Joseph, M.P., Popescu, C., Koncz, C., and Szabados, L. (2008) Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol 147, 528–542.

    Article  PubMed  CAS  Google Scholar 

  41. Jones, H.G. (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant, Cell, and Environ 22, 1043–1055.

    Article  Google Scholar 

  42. Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F., and Giraudat, J. (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089–3099.

    Article  PubMed  CAS  Google Scholar 

  43. Wang, Y., Holroyd, G., Hetherington, A.M., and Ng, C.K., (2004) Seeing ‘cool’ and ‘hot’–infrared thermography as a tool for non-invasive, high-throughput screening of Arabidopsis guard cell signalling mutants. J Exp Bot 55, 1187–1193.

    Article  PubMed  CAS  Google Scholar 

  44. Sirichandra, C., Wasilewska, A., Vlad, F., Valon, C., and Leung, J. (2009) The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot 60, 1439–1463

    Article  PubMed  CAS  Google Scholar 

  45. Beerling, D.J., Osborne, C.P., and Chaloner, W.G. (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410, 352–354.

    Article  PubMed  CAS  Google Scholar 

  46. Hedrich, R. and Steinmeyer, R. (2001) Do drought-hardened plants suffer from fever? Trends Plant Sci 6, 506; author reply 507–508.

    Article  Google Scholar 

  47. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15, 473–497.

    Article  CAS  Google Scholar 

  48. Wu, S.J., Ding, L., and Zhu, J.K. (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617–627.

    Article  PubMed  CAS  Google Scholar 

  49. Leung, J. and Giraudat, J. (1998) Abscisic Acid Signal Transduction. Annu Rev Plant Physiol Plant Mol Biol 49, 199–222.

    Article  PubMed  CAS  Google Scholar 

  50. Finkelstein, R.R., S.S. Gampala, and C.D. (2002) Rock, abscisic acid signaling in seeds and seedlings. Plant Cell 14S, 15–45.

    Google Scholar 

  51. Koornneef, M., Reuling, G., and Karssen, C.M., (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61, 377–383.

    Article  CAS  Google Scholar 

  52. Kuhn, J.M., Boisson-Dernier, A., Dizon, M.B., Maktabi, M.H., and Schroeder, J.I. (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140, 127–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by EU Grant no. FP6-020232-2, TéT grant no. FR-34/2008 and OTKA Grant no. K-68226.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Papdi, C., Leung, J., Joseph, M.P., Salamó, I.P., Szabados, L. (2010). Genetic Screens to Identify Plant Stress Genes. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 639. Humana Press. https://doi.org/10.1007/978-1-60761-702-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-702-0_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-701-3

  • Online ISBN: 978-1-60761-702-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics