Skip to main content

Approaches to Identifying Genes for Salinity Tolerance and the Importance of Timescale

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 639))

Abstract

Soil salinity reduces the ability of plants to take up water, and this quickly causes reductions in the rate of cell expansion in growing tissues. The slower formation of photosynthetic leaf area in turn reduces the flow of assimilates to the meristematic and growing tissues of the plant. Later, salt may exert an additional effect on growth. If excessive amounts of Na+ or Cl− enter the plant it may rise to toxic levels in the older transpiring leaves. This injury, added to an already reduced leaf area, will then further limit the flow of carbon compounds to meristems and growing zones in leaves. This chapter analyses the various plant responses over time, to provide a conceptual framework on which the different approaches to gene discovery can be based. Knowledge of the physiological processes that are important in the tolerance response, and the time frame in which they act, will enable further progress in understanding of the molecular regulation of salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FAO. (2009) FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush

  2. Munns, R. and Tester, M. (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59, 651–681.

    Article  PubMed  CAS  Google Scholar 

  3. Flowers, T.J. and Colmer, T.D. (2008) Salinity tolerance in halophytes. New Phytol 179, 945–963.

    Article  PubMed  CAS  Google Scholar 

  4. Xiong, L.M., Schumaker, K.S., and Zhu, J.K. (2002) Cell signaling during cold, drought and salt stress. Plant Cell, 14, S165–S183.

    Article  PubMed  CAS  Google Scholar 

  5. Bartels, D. and Sunkar, R. (2005) Drought and salt tolerance in plants. CRC Crit Rev Plant Sci 24, 23–58.

    Article  CAS  Google Scholar 

  6. Chinnusamy, V., Jagendorf, A., and Zhu, J.K. (2005) Understanding and improving salt tolerance in plants. Crop Science 45, 437–448.

    Article  CAS  Google Scholar 

  7. Cramer, G.R. and Bowman, D.C. (1991) Kinetics of maize leaf elongation. I. Increased yield threshold limits short-term, steady-state elongation rates after exposure to salinity. J Exp Bot 42, 1417–1426.

    Article  Google Scholar 

  8. Frensch, J. and Hsiao, T.C. (1995) Rapid response of the yield threshold and turgor regulation during adjustment of root growth to water stress in Zea mays. Plant Physiol 108, 303–312.

    PubMed  CAS  Google Scholar 

  9. Passioura, J.B. and Munns, R. (2000) Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Aust J Plant Physiol 27, 941–948.

    Google Scholar 

  10. Munns, R. (2002) Comparative physiology of salt and water stress. Plant, Cell & Environ 25, 239–250.

    Article  CAS  Google Scholar 

  11. Rodríguez, H.G., Roberts, J.K.M., Jordan, W.R., and Drew, M.C. (1997) Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol 113, 881–893.

    PubMed  Google Scholar 

  12. Munns R. (2005) Genes and salt tolerance: bringing them together. New Phytologist 167, 645–663.

    Article  PubMed  CAS  Google Scholar 

  13. Boyer, J.S., James, R.A., Munns, R., Condon, A.G., and Passioura, J.B. (2008) Osmotic adjustment may lead to anomalously low estimates of relative water content in wheat and barley. Funct Plant Biol 35, 1172–1182.

    Article  Google Scholar 

  14. Munns, R., Guo, J., Passioura, J.B., and Cramer, G.R. (2000) Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Aust J Plant Physiol 27, 949–957.

    Google Scholar 

  15. James, R.A., Rivelli, A.R., Munns, R., and von Caemmerer, S. (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29, 1393–1403.

    Article  CAS  Google Scholar 

  16. James, R.A., von Caemmerer, S., Condon, A.G., Zwart, A.B., and Munns, R. (2008) Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Funct Plant Biol 35, 111–123.

    Article  CAS  Google Scholar 

  17. Hu, Y. and Schmidhalter, U. (1998) Spatial distributions and net deposition rates of mineral elements in the elongating wheat (Triticum aestivum L.) leaf under saline soil conditions. Planta 204, 212–219.

    Article  CAS  Google Scholar 

  18. Fricke, W. (2004) Rapid and tissue-specific accumulation of solutes in the growth zone of barley leaves in response to salinity. Planta 219, 515–525.

    PubMed  CAS  Google Scholar 

  19. Foyer, C.H. and Noctor, G. (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28, 1056–1071.

    Article  CAS  Google Scholar 

  20. Nicolas, M.E., Munns, R., Samarakoon, A.B., and Gifford, R.M. (1993) Elevated CO2 improves the growth of wheat under salinity, Aust J Plant Physiol 20, 349–360.

    Article  CAS  Google Scholar 

  21. Munns, R., Schachtman, D.P., and Condon, A.G. (1995) The significance of a two-phase growth response to salinity in wheat and barley, Aust J Plant Physiol 22, 561–569.

    Article  CAS  Google Scholar 

  22. Munns, R. and Rawson, H.M. (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley, Aust J Plant Physiol 26, 459–464.

    Article  Google Scholar 

  23. Ghanem, M.E., van Elteren, J., Albacete, A., Quinet, M., Martínez-Andújar, C., Kinet, J.M., Pérez-Alfocea, F., and Lutts, S. (2008) Impact of salinity on early reproductive physiology of tomato (Solanum lycopersicumL.) in relation to a heterogeneous distribution of toxic ions in flower organs. Funct Plant Biol 36, 125–136.

    Article  Google Scholar 

  24. Khatun, S., Rizzo, C.A., and Flowers, T.J. (1995) Genotypic variation in the effect of salinity on fertility in rice. Plant Soil 173, 239–250.

    Article  CAS  Google Scholar 

  25. Munns, R. and James, R.A. (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253, 201–218.

    Article  CAS  Google Scholar 

  26. Rajendran, K., Tester, M., and Roy, S.J. (2008) Quantifying the three main components of salinity tolerance in cereals. Plant Cell & Environ 32, 237–249.

    Article  Google Scholar 

  27. Aslam, M., Qureshi, R.H., and Ahmed, N. (1993) A rapid screening technique for salt tolerance in rice (Oryza sativa L.). Plant Soil 150, 99–107.

    Article  Google Scholar 

  28. Ren, Z.H., Gao, J.P., Li, L.G., Cai, H.L., Huang, W., Chao, D.Y., Zhu, M.Z., Wang, Z.Y., Luan, S., and Lin, H.X. (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter Nature Genet 37, 1141–1146.

    Article  PubMed  CAS  Google Scholar 

  29. Huang, S., Spielmeyer, W., Lagudah, E.S., James, R.A., Platten, J.D., Dennis, E.S., and Munns, R. (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142, 1718–1727.

    Article  PubMed  CAS  Google Scholar 

  30. Byrt, C.S., Platten, J.D., Spielmeyer, W., James, R.A., Lagudah, E.S., Dennis, E.S., Tester, M., and Munns, R. (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143, 1918–28.

    Article  PubMed  CAS  Google Scholar 

  31. Wu, S.J., Lei, D., and Zhu, J.K. (1996) SOS1,a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617–627.

    Article  PubMed  CAS  Google Scholar 

  32. Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B.H., Matsumoto, T.K., Koiwa, H., Zhu, J.K., Bressan, R.A., and Hasegawa, P.M. (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98, 14150–14155.

    Article  PubMed  CAS  Google Scholar 

  33. Sanchez, D.H., Siahpoosh, M., Roessner, U., Udvardi, M., and Kopka, J. (2007) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132, 209–219.

    Google Scholar 

  34. Gong, Q.Q., Li, P.H., Ma, S.S., Rupassara, S.I., and Bohnert, H.J. (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44, 826–39.

    Article  PubMed  CAS  Google Scholar 

  35. Jacobs, A., Lunde, C., Bacic, A., Tester, M., and Roessner, U. (2007) The impact of constitutive heterologous expression of a moss Na+ transporter on the metabolomes of rice and barley. Metabolomics 3, 307–317.

    Article  CAS  Google Scholar 

  36. Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X.P., and Close, T.J. (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6, 143–156.

    Article  PubMed  CAS  Google Scholar 

  37. Schachtman, D.P. and Schroeder, J.I. (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370, 655–658.

    Article  PubMed  CAS  Google Scholar 

  38. Apse, M.P., Aharon, G.S., Snedden, W.A., and Blumwald, E. (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256–1258.

    Article  PubMed  CAS  Google Scholar 

  39. Benito, B. and Rodriguez-Navarro, A. (2003) Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens. Plant J 36, 382–389.

    Article  PubMed  CAS  Google Scholar 

  40. Chen, T.H.H. and Murata, N. (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13, 499–505.

    Article  PubMed  CAS  Google Scholar 

  41. Bernstein, N., Silk, W.K., and Läuchli, A. (1993) Growth and development of sorghum leaves under conditions of NaCl stress. Spatial and temporal aspects of leaf growth inhibition. Planta 191, 433–439.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Mark Tester and Stuart Roy for critical comments on the chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Munns, R. (2010). Approaches to Identifying Genes for Salinity Tolerance and the Importance of Timescale. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 639. Humana Press. https://doi.org/10.1007/978-1-60761-702-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-702-0_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-701-3

  • Online ISBN: 978-1-60761-702-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics