Skip to main content

Activation Tagging with En/Spm-I /dSpm Transposons in Arabidopsis

  • Protocol
  • First Online:
Plant Reverse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 678))

Abstract

Activation tagging is a powerful strategy to find new gene functions, especially from genes that are redundant or show lethal knock-out phenotypes. It has been applied using T-DNA or transposons. En/Spm-I/dSpm engineered transposons are efficient Activation tags in Arabidopsis. An immobilized transposase source and an enhancer-bearing non-autonomous element are used in combination with positive and negative selectable markers to generate a population of single or low copy, stable insertions. This method describes the steps required to select the best parental lines, generate a population of stable insertions, and gene identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Google Scholar 

  2. Bouché, N., and Bouchez, D. (2001) Arabidopsis gene knockout: phenotypes wanted. Current Opinion in Plant Biology 4, 111–17.

    Article  PubMed  Google Scholar 

  3. Kuromori, T., Wada, T., Kamiya, A., Yuguchi, M., Yokouchi, T., Imura, Y., Takabe, H., Sakurai, T., Akiyama, K., Hirayama, T., Okada, K., and Shinozaki, K. (2006) A trial of phenome analysis using 4000 Ds-insertional mutants in gene-coding regions of Arabidopsis. Plant Journal 47, 640–51.

    Article  PubMed  CAS  Google Scholar 

  4. Walden, R., Fritze, K., Hayashi, H., Miklashevichs, E., Harling, H., Schell, J. (1994) Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Molecular Biology 26, 1521–28.

    Article  PubMed  CAS  Google Scholar 

  5. Lewin, B. (Ed.) (2008) Genes IX, Jones and Bartlett Publishers Inc., Sudbury, MA, USA.

    Google Scholar 

  6. Odell, J. T., Nagy, F., and Chua, N. H. (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35 S promoter. Nature 313, 810–12.

    Article  PubMed  CAS  Google Scholar 

  7. Neff, M. M., Nguyen, S. M., Malancharuvil, E. J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S., and Chory, J. (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 96, 15316–23.

    Article  PubMed  CAS  Google Scholar 

  8. van der Graaff, E., Dulk-Ras, A. D., Hooykaas, P. J., and Keller, B. (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127, 4971–80.

    PubMed  Google Scholar 

  9. Weigel, D., Ahn, J. H., Blazquez, M. A., Borevitz, J. O., Christensen, S. K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E. J., Neff, M. M., Nguyen, J. T., Sato, S., Wang, Z. -Y., Xia, Y., Dixon, R. A., Harrison, M. J., Lamb, C. J., Yanofsky, M. F., and Chory, J. (2000) Activation tagging in Arabidopsis. Plant Physiology 122, 1003–14.

    Article  PubMed  CAS  Google Scholar 

  10. Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., and Lamb, C. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–94.

    PubMed  CAS  Google Scholar 

  11. Huang, S., Cerny, R. E., Bhat, D. S., and Brown, S. M. (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiology 125, 573–84.

    Article  PubMed  CAS  Google Scholar 

  12. Kakimoto, T. (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982–85.

    Article  PubMed  CAS  Google Scholar 

  13. Marsch-Martinez, N., Greco, R., Van Arkel, G., Herrera-Estrella, L., and Pereira, A. (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiology 129, 1544–56.

    Article  PubMed  CAS  Google Scholar 

  14. Schneider, A., Kirch, T., Gigolashvili, T., Mock, H. -P., Sonnewald, U., Simon, R., Flügge, U. -I., and Werr, W. (2005) A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Letters 579, 4622–28.

    Article  PubMed  CAS  Google Scholar 

  15. Wilson, K., Long, D., Swinburne, K., and Coupland, G. (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8, 659–71.

    PubMed  CAS  Google Scholar 

  16. Ayliffe, M. A., and Pryor, A. J. (2007) Activation tagging in plants – generation of novel, gain-of-function mutations. Australian Journal of Agricultural Research 58, 490–97.

    Article  Google Scholar 

  17. Busov, V. B., Meilan, R., Pearce, D. W., Ma, C., Rood, S. B., and Strauss, S. H. (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiology 132, 1283–91.

    Article  PubMed  CAS  Google Scholar 

  18. Jeong, D. -H., An, S., Kang, H. -G., Moon, S., Han, J. -J., Park, S., Lee, H. S., An, K., and An, G. (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiology 130, 1636–44.

    Article  PubMed  CAS  Google Scholar 

  19. Mathews, H., Clendennen, S. K., Caldwell, C. G., Liu, X. L., Connors, K., Matheis, N., Schuster, D. K., Menasco, D. J., Wagoner, W., Lightner, J., and Wagner, D. R. (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689–703.

    Article  PubMed  CAS  Google Scholar 

  20. Qu, S., Desai, A., Wing, R., and Sundaresan, V. (2008) A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiology 146, 189–99.

    Article  PubMed  CAS  Google Scholar 

  21. Zubko, E., Adams, C. J., Machaekova, I., Malbeck, J., Scollan, C., and Meyer, P. (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant Journal 29, 797–808.

    Article  PubMed  CAS  Google Scholar 

  22. Ayliffe, M. A., Pallota, M., Langridge, P., and Pryor, A. J. (2007) A barley activation tagging system. Plant Molecular Biology 64, 329–47.

    Article  PubMed  CAS  Google Scholar 

  23. Chalfun-Junior, A., Mes, J., Mlynárová, L., Aarts, M., and Angenent, G. C. (2003) Low frequency of T-DNA based activation tagging in Arabidopsis is correlated with methylation of CaMV 35 S enhancer sequences. FEBS Letters 555, 459–63.

    Article  PubMed  CAS  Google Scholar 

  24. Pereira, A. (2000) A transgenic perspective on plant functional genomics. Transgenic Research 9, 245–60.

    Article  PubMed  CAS  Google Scholar 

  25. Aarts, M. G., Corzaan, P., Stiekema, W. J., and Pereira, A. (1995) A two-element enhancer-inhibitor transposon system in Arabidopsis thaliana. Molecular and General Genetics 247, 555–64.

    Article  PubMed  CAS  Google Scholar 

  26. Bancroft, I., and Dean, C. (1993) Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134, 1221–9.

    PubMed  CAS  Google Scholar 

  27. Matsuhara, S., Jingu, F., Takahashi, T., and Komeda, Y. (2000) Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant Journal 22, 79–86.

    Article  PubMed  CAS  Google Scholar 

  28. Zuo, J., Niu, Q. -W., and Chua, N. H. (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant Journal 24, 265–73.

    Article  PubMed  CAS  Google Scholar 

  29. Banks, J. A., Masson, P., and Fedoroff, N. (1988) Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev 2, 1364–80.

    Article  PubMed  CAS  Google Scholar 

  30. Tissier, A. F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M. A., Murphy, G., and Jones, J. D. (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11, 1841–52.

    PubMed  CAS  Google Scholar 

  31. De Block, M., Botterman, J., Vanderwiele, M., Dockx, J., Thoen, C., Gossele, V., Movva, R. N., Thompson, C., Montagu, V. M., and Leemans, J. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO Journal 6, 2513–18.

    PubMed  CAS  Google Scholar 

  32. Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M., and Botterman, J. (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO Journal 6, 2519–23.

    PubMed  CAS  Google Scholar 

  33. O’Keefe, D. P., Tepperman, J. M., Dean, C., Leto, K. J., Erbes, D. L., and Odell, J. T. (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiology 105, 473–82.

    PubMed  Google Scholar 

  34. Liu, Y. G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant Journal 8, 457–63.

    Article  PubMed  CAS  Google Scholar 

  35. Liu, Y. G., and Whittier, R. F. (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25, 674–81.

    Article  PubMed  CAS  Google Scholar 

  36. Tsugeki, R., Kochieva, E. Z., and Fedoroff, N. V. (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant Journal 10, 479–89.

    Article  PubMed  CAS  Google Scholar 

  37. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–402.

    Article  PubMed  CAS  Google Scholar 

  38. Pereira, A., and Aarts, M. G. M. (1997) in “Arabidopsis Protocols” (Martinez-Zapater, J. M., and Salinas, J., Eds.), Vol. 82, Springer.

    Google Scholar 

  39. Balzergue, S., Dubreucq, B., Chauvin, S., Le-Clainche, I., Le Boulaire, F., de Rose, R., Samson, F., Biaudet, V., Lecharny, A., Cruaud, C., Weissenbach, J., Caboche, M., and Lepiniec, L. (2001) Improved PCR-walking for large-scale isolation of plant T-DNA borders. Biotechniques 30, 496–8, 502, 04.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marsch-Martínez, N., Pereira, A. (2011). Activation Tagging with En/Spm-I /dSpm Transposons in Arabidopsis . In: Pereira, A. (eds) Plant Reverse Genetics. Methods in Molecular Biology, vol 678. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-682-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-682-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-681-8

  • Online ISBN: 978-1-60761-682-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics