Skip to main content

Mutagenesis Protocols in Saccharomyces cerevisiae by In Vivo Overlap Extension

  • Protocol
  • First Online:
In Vitro Mutagenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 634))

Abstract

A high recombination frequency and its ease of manipulation has made Saccharomyces cerevisiae a unique model eukaryotic organism to study homologous recombination. Indeed, the well-developed recombination machinery in S. cerevisiae facilitates the construction of mutant libraries for directed evolution experiments. In this context, in vivo overlap extension (IVOE) is a particularly attractive protocol that takes advantage of the eukaryotic apparatus to carry out combinatorial saturation mutagenesis, site-directed recombination or site-directed mutagenesis, avoiding ligation steps and additional PCR reactions that are common to standard in vitro protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloom JD, Meyer MM, Meinhold P, Otey CR, MacMillan D, Arnold FH (2005) Evolving strategies for enzyme engineering. Curr Opin Struct Biol 15:447–452

    Article  PubMed  CAS  Google Scholar 

  2. Tao H, Cornish VW (2002) Milestones in directed enzyme evolution. Curr Opin Chem Biol 6:858–864

    Article  PubMed  CAS  Google Scholar 

  3. Chica RA, Doucet N, Pelletier JN (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol 16:378–384

    Article  PubMed  CAS  Google Scholar 

  4. Zumárraga M, Domínguez CV, Camarero S, Shleev S, Polaina J, Martínez-Arias A, Ferrer M, de Lacey AL, Fernández V, Ballesteros A, Plou FJ, Alcalde M (2008) Combinatorial saturation mutagenesis of the Myceliophthora thermophila laccase T2 mutant: the connection between the C-terminal plug and the conserved 509VSG511 tripeptide. Comb Chem High Throughput Screen 11:807–816

    Article  PubMed  Google Scholar 

  5. Arnold FH, Georgiou G (eds) (2003) Directed evolution: library creation, methods and protocols, vol 231. Humana Press, Totowa, NJ

    Google Scholar 

  6. Alcalde M, Zumárraga M, Polaina J, Ballesteros A, Plou FJ (2006) Combinatorial saturation mutagenesis by in vivo overlap extension for the engineering of fungal laccases. Comb Chem High Throughput Screen 9:719–727

    Article  PubMed  CAS  Google Scholar 

  7. Zumárraga M, Camarero S, Shleev S, Martinez-Arias A, Ballesteros A, Plou FJ, Alcalde M (2008) Altering the laccase functionality by in vivo assembly of mutant libraries with different mutational spectra. Proteins 71:250–260

    Article  PubMed  Google Scholar 

  8. Abecassis V, Pompon D, Truan G (2000) High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2. Nucleic Acids Res 28:1–10

    Article  Google Scholar 

  9. Zumárraga M, Bulter T, Shleev S, Polaina J, Martínez-Arias A, Plou FJ, Ballesteros A, Alcalde M (2007) In vitro evolution of a fungal laccase in high concentrations of organic cosolvents. Chem Biol 14:1052–1064

    Article  PubMed  Google Scholar 

  10. Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–995

    Article  PubMed  CAS  Google Scholar 

  11. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  12. Bulter T, Alcalde M (2003) Preparing libraries in S. cerevisiae. In: Arnold FH, Gergiou G (eds) Directed evolution library creation. Methods and protocols. Humana Press, Totowa, NJ, pp 17–22

    Chapter  Google Scholar 

  13. Okkels JS (2004) In vivo gene shuffling in yeast: a fast and easy method for directed evolution of enzymes. In: Svendsen A (ed) Enzyme functionality: design, engineering, and screening. Marcel Dekker, New York, pp 413–424

    Google Scholar 

  14. Arnold FH, Georgiou G (eds) (2003) Directed enzyme evolution: screening and selection methods, vol 230. Humana Press, Totowa, NJ

    Google Scholar 

  15. Bulter T, Sieber V, Alcalde M (2003) Screening mutant libraries in Saccharomyces cerevisiae. In: Arnold FH, Gergiou G (eds) Directed enzyme evolution. Screening and selection methods, vol 230. Humana Press, Totowa, NJ, pp 99–108

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (projects CCG08-CSIC/PPQ-3706; PIE 200880I033) and EU project FP7-NMP4-SL-2009-229255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Alcalde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alcalde, M. (2010). Mutagenesis Protocols in Saccharomyces cerevisiae by In Vivo Overlap Extension. In: Braman, J. (eds) In Vitro Mutagenesis Protocols. Methods in Molecular Biology, vol 634. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-652-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-652-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-651-1

  • Online ISBN: 978-1-60761-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics