Skip to main content

An Epigenetic Model for Susceptibility to Oxidative DNA Damage in the Aging Brain and Alzheimer’s Disease

  • Chapter
  • First Online:
Aging and Age-Related Disorders

Abstract

Epigenetics and oxidative stress are two cellular mechanisms that appear to be independent from each other and associated with distinct cellular processes. Epigenetics is associated with developmental regulation of gene expression, mainly through the process of methylation of genetic promoter regions. On the other hand, oxidative stress is a cellular process of disruption in the homeostasis between cellular antioxidant systems and reactive oxygen and nitrogen species leading to cell malfunction or death. The oxidative stress process is linked to a myriad of diseases and is a consequence after toxicologic challenges. In this chapter, we summarize results from our laboratories that identify developmental stage and toxicologic challenges that result in a novel mechanism in which toxicologic exposure during development alters the normal pattern in markers of oxidative stress and epigenetic regulation. The concordance of these two alterations results in pathologic changes similar to those seen in Alzheimer’s disease. Thus, we postulate a novel mechanism in which epigenetics and oxidative stress are at play in disease, and the occurrence of one of these processes will alter the occurrence of the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science. 1987;235:880–884.

    Article  PubMed  CAS  Google Scholar 

  2. Robakis NK, Ramakrishna N, Wolfe G, Wisniewski HM. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci USA. 1987;84:4190–4194.

    Article  PubMed  CAS  Google Scholar 

  3. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA. 1985;82:4245–4249.

    Article  PubMed  CAS  Google Scholar 

  4. Selkoe DJ, Abraham CR, Podlisny MB, Duffy LK. Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer’s disease. J Neurochem. 1986;46:1820–1834.

    Article  PubMed  CAS  Google Scholar 

  5. Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science. 1987;235:877–880.

    Article  PubMed  CAS  Google Scholar 

  6. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120:885–890.

    Article  PubMed  CAS  Google Scholar 

  7. Gabbita SP, Lovell MA, Markesbery WR. Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem. 1998;71:2034–2040.

    Article  PubMed  CAS  Google Scholar 

  8. Lovell MA, Gabbita SP, Markesbery WR. Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J Neurochem. 1999;72:771–776.

    Article  PubMed  CAS  Google Scholar 

  9. Williamson J, Goldman J, Marder KS. Genetic aspects of Alzheimer disease. Neurologist. 2009;15:80–86.

    Article  PubMed  Google Scholar 

  10. McGurn B, Deary IJ, Starr JM. Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology. 2008;71:1051–1056.

    Article  PubMed  Google Scholar 

  11. Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76–80.

    Article  PubMed  Google Scholar 

  12. Morange M. The relations between genetics and epigenetics: a historical point of view. Ann NY Acad Sci. 2002;981:50–60.

    Article  PubMed  CAS  Google Scholar 

  13. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

    Article  PubMed  CAS  Google Scholar 

  14. Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol. 2008;68:1–11.

    Article  PubMed  Google Scholar 

  15. Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992;1:397–400.

    Article  PubMed  CAS  Google Scholar 

  16. Malmgren H, Steen-Bondeson ML, Gustavson KH, Seemanova E, Holmgren G, Oberle I, Mandel JL, Pettersson U, Dahl N. Methylation and mutation patterns in the fragile X syndrome. Am J Med Genet. 1992;43:268–278.

    Article  PubMed  CAS  Google Scholar 

  17. Akbarian S. The neurobiology of Rett syndrome. Neuroscientist. 2003;9:57–63.

    Article  PubMed  CAS  Google Scholar 

  18. de Vries BB, Jansen CC, Duits AA, Verheij C, Willemsen R, van Hemel JO, van den Ouweland AM, Niermeijer MF, Oostra BA, Halley DJ. Variable FMR1 gene methylation of large expansions leads to variable phenotype in three males from one fragile X family. J Med Genet. 1996;33:1007–1010.

    Article  PubMed  Google Scholar 

  19. Akbarian S, Jiang Y, Laforet G. The molecular pathology of Rett syndrome: synopsis and update. Neuromolecular Med. 2006;8:485–494.

    Article  PubMed  CAS  Google Scholar 

  20. Jiang YH, Sahoo T, Michaelis RC, Bercovich D, Bressler J, Kashork CD, Liu Q, Shaffer LG, Schroer RJ, Stockton DW, Spielman RS, Stevenson RE, Beaudet AL. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A. 2004;131:1–10.

    Article  PubMed  Google Scholar 

  21. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15:3132–3145.

    Article  PubMed  CAS  Google Scholar 

  22. Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, Shafa R, Glatt SJ, Nguyen G, Ponte JF, Thiagalingam S, Tsuang MT. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134B:60–66.

    Article  PubMed  Google Scholar 

  23. Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol. 2008;8:57–64.

    Article  PubMed  CAS  Google Scholar 

  24. Cacabelos R. Pharmacogenomics in Alzheimer’s disease. Methods Mol Biol. 2008;448:213–357.

    Article  PubMed  CAS  Google Scholar 

  25. Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS ONE. 2008;3:e2698.

    Article  PubMed  Google Scholar 

  26. Ancolio K, Dumanchin C, Barelli H, Warter JM, Brice A, Campion D, Frebourg T, Checler F. Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715 –> Met betaAPP-770 mutation responsible for probable early-onset Alzheimer’s disease. Proc Natl Acad Sci USA. 1999;96:4119–4124.

    Article  PubMed  CAS  Google Scholar 

  27. Eckman CB, Mehta ND, Crook R, Perez-tur J, Prihar G, Pfeiffer E, Graff-Radford N, Hinder P, Yager D, Zenk B, Refolo LM, Prada CM, Younkin SG, Hutton M, Hardy J. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet. 1997;6:2087–2089.

    Article  PubMed  CAS  Google Scholar 

  28. Haass C, Hung AY, Selkoe DJ, Teplow DB. Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem. 1994;269:17741–17748.

    PubMed  CAS  Google Scholar 

  29. Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L Jr, Eckman C, Golde TE, Younkin SG. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 1994;264:1336–1340.

    Article  PubMed  CAS  Google Scholar 

  30. Bertram L, Tanzi RE. Alzheimer’s disease: one disorder, too many genes? Hum Mol Genet. 2004;13(Spec No 1):R135–R141.

    Article  PubMed  CAS  Google Scholar 

  31. Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA, Posner SF, Viitanen M, Winblad B, Ahlbom A. Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci. 1997;52:M117–M125.

    Article  PubMed  CAS  Google Scholar 

  32. Gatz M, Fratiglioni L, Johansson B, Berg S, Mortimer JA, Reynolds CA, Fiske A, Pedersen NL. Complete ascertainment of dementia in the Swedish Twin Registry: the HARMONY study. Neurobiol Aging. 2005;26:439–447.

    Article  PubMed  Google Scholar 

  33. Raiha I, Kaprio J, Koskenvuo M, Rajala T, Sourander L. Alzheimer’s disease in twins. Biomed Pharmacother. 1997;51:101–104.

    Article  PubMed  CAS  Google Scholar 

  34. Moreira PI, Nunomura A, Nakamura M, Takeda A, Shenk JC, Aliev G, Smith MA, Perry G. Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med. 2008;44:1493–1505.

    Article  PubMed  CAS  Google Scholar 

  35. Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, Strafaci JA, Freedman ML. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol. 1998;150:40–44.

    Article  PubMed  CAS  Google Scholar 

  36. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–1115.

    Article  PubMed  CAS  Google Scholar 

  37. Einolf HJ, Schnetz-Boutaud N, Guengerich FP. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7, 8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases. Biochemistry. 1998;37:13300–13312.

    Article  PubMed  CAS  Google Scholar 

  38. Hayakawa H, Taketomi A, Sakumi K, Kuwano M, Sekiguchi M. Generation and elimination of 8-oxo-7, 8-dihydro-2-deoxyguanosine 5-triphosphate, a mutagenic substrate for DNA synthesis, in human cells. Biochemistry. 1995;34:89–95.

    Article  PubMed  CAS  Google Scholar 

  39. Ghosh R, Mitchell DL. Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res. 1999;27:3213–3218.

    Article  PubMed  CAS  Google Scholar 

  40. Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004;32:4100–4108.

    Article  PubMed  CAS  Google Scholar 

  41. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–580.

    Article  PubMed  CAS  Google Scholar 

  42. Barker DJ. Fetal origins of cardiovascular disease. Ann Med. 1999;31(Suppl 1):3–6.

    PubMed  Google Scholar 

  43. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–1239.

    Article  PubMed  CAS  Google Scholar 

  44. Barker DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004;23:588S–595S.

    PubMed  CAS  Google Scholar 

  45. Yarbrough DE, Barrett-Connor E, Kritz-Silverstein D, Wingard DL. Birth weight, adult weight, and girth as predictors of the metabolic syndrome in postmenopausal women: the Rancho Bernardo Study. Diabetes Care. 1998;21:1652–1658.

    Article  PubMed  CAS  Google Scholar 

  46. Valdez R, Athens MA, Thompson GH, Bradshaw BS, Stern MP. Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia. 1994;37:624–631.

    Article  PubMed  CAS  Google Scholar 

  47. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–854.

    Article  PubMed  CAS  Google Scholar 

  48. Bilbo SD, Levkoff LH, Mahoney JH, Watkins LR, Rudy JW, Maier SF. Neonatal infection induces memory impairments following an immune challenge in adulthood. Behav Neurosci. 2005;119:293–301.

    Article  PubMed  CAS  Google Scholar 

  49. Boksa P, El-Khodor BF. Birth insult interacts with stress at adulthood to alter dopaminergic function in animal models: possible implications for schizophrenia and other disorders. Neurosci Biobehav Rev. 2003;27:91–101.

    Article  PubMed  CAS  Google Scholar 

  50. Dalman C, Cullberg J. Neonatal hyperbilirubinaemia–a vulnerability factor for mental disorder? Acta Psychiatr Scand. 1999;100:469–471.

    Article  PubMed  CAS  Google Scholar 

  51. Preti A. Fetal hypoxia, genetic risk, and schizophrenia. Am J Psychiatry. 2003;160:1186;author reply 1186.

    Article  PubMed  Google Scholar 

  52. Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305:1733–1736.

    Article  PubMed  CAS  Google Scholar 

  53. Toscano CD, Guilarte TR. Lead neurotoxicity: from exposure to molecular effects. Brain Res Brain Res Rev. 2005;49:529–554.

    Article  PubMed  CAS  Google Scholar 

  54. Needleman HL, Leviton A. Neurologic effects of exposure to lead. J Pediatr. 1979;94:505–556.

    Article  PubMed  CAS  Google Scholar 

  55. Winneke G, Kramer U, Brockhaus A, Ewers U, Kujanek G, Lechner H, Janke W. Neuropsychological studies in children with elevated tooth-lead concentrations. II. Extended study. Int Arch Occup Environ Health. 1983;51:231–252.

    Article  PubMed  CAS  Google Scholar 

  56. Gorell JM, Rybicki BA, Cole Johnson C, Peterson EL. Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology. 1999;18:303–308.

    Article  PubMed  CAS  Google Scholar 

  57. Kamel F, Umbach DM, Munsat TL, Shefner JM, Hu H, Sandler DP. Lead exposure and amyotrophic lateral sclerosis. Epidemiology. 2002;13:311–319.

    Article  PubMed  Google Scholar 

  58. Stewart WF, Schwartz BS, Simon D, Kelsey K, Todd AC. ApoE genotype, past adult lead exposure, and neurobehavioral function. Environ Health Perspect. 2002;110:501–505.

    Article  PubMed  CAS  Google Scholar 

  59. Stewart WF, Schwartz BS, Davatzikos C, Shen D, Liu D, Wu X, Todd AC, Shi W, Bassett S, Youssem D. Past adult lead exposure is linked to neurodegeneration measured by brain MRI. Neurology. 2006;66:1476–1484.

    Article  PubMed  CAS  Google Scholar 

  60. Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, Lahiri DK, Zawia NH. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci. 2005;25:823–829.

    Article  PubMed  CAS  Google Scholar 

  61. Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci. 2008;28:3–9.

    Article  PubMed  CAS  Google Scholar 

  62. Smith MA, Perry G. Free radical damage, iron, and Alzheimer’s disease. J Neurol Sci. 1995;134(Suppl):92–94.

    Article  PubMed  Google Scholar 

  63. Esposito L, Raber J, Kekonius L, Yan F, Yu GQ, Bien-Ly N, Puolivali J, Scearce-Levie K, Masliah E, Mucke L. Reduction in mitochondrial superoxide dismutase modulates Alzheimer’s disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J Neurosci. 2006;26:5167–5179.

    Article  PubMed  CAS  Google Scholar 

  64. Cecchi C, Fiorillo C, Sorbi S, Latorraca S, Nacmias B, Bagnoli S, Nassi P, Liguri G. Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients. Free Radic Biol Med. 2002;33:1372–1379.

    Article  PubMed  CAS  Google Scholar 

  65. Bolin CM, Basha R, Cox D, Zawia NH, Maloney B, Lahiri DK, Cardozo-Pelaez F. Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J. 2006;20:788–790.

    PubMed  CAS  Google Scholar 

  66. Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays. 2004;26:533–542.

    Article  PubMed  CAS  Google Scholar 

  67. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–2402.

    Article  PubMed  CAS  Google Scholar 

  68. Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal nutrition and fetal development. J Nutr. 2004;134:2169–2172.

    PubMed  CAS  Google Scholar 

  69. Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241:172–182.

    Article  PubMed  CAS  Google Scholar 

  70. Weaver IC, Diorio J, Seckl JR, Szyf M, Meaney MJ. Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann NY Acad Sci. 2004;1024:182–212.

    Article  PubMed  CAS  Google Scholar 

  71. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135:1382–1386.

    PubMed  CAS  Google Scholar 

  72. Poirier LA, Vlasova TI. The prospective role of abnormal methyl metabolism in cadmium toxicity. Environ Health Perspect. 2002;110(Suppl 5):793–795.

    Article  PubMed  CAS  Google Scholar 

  73. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 2003;286:355–365.

    Article  PubMed  CAS  Google Scholar 

  74. Foster WG, McMahon A, Rice DC. Sperm chromatin structure is altered in cynomolgus monkeys with environmentally relevant blood lead levels. Toxicol Ind Health. 1996;12:723–735.

    PubMed  CAS  Google Scholar 

  75. Quintanilla-Vega B, Hoover D, Bal W, Silbergeld EK, Waalkes MP, Anderson LD. Lead effects on protamine-DNA binding. Am J Ind Med. 2000;38:324–329.

    Article  PubMed  CAS  Google Scholar 

  76. Ames BN, Shigenaga MK. Oxidants are a major contributor to aging. Ann NY Acad Sci. 1992;663:85–96.

    Article  PubMed  CAS  Google Scholar 

  77. Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1997;94:8010–8015.

    Article  PubMed  CAS  Google Scholar 

  78. Mao G, Pan X, Zhu BB, Zhang Y, Yuan F, Huang J, Lovell MA, Lee MP, Markesbery WR, Li GM, Gu L. Identification and characterization of OGG1 mutations in patients with Alzheimer’s disease. Nucleic Acids Res. 2007;35:2759–2766.

    Article  PubMed  CAS  Google Scholar 

  79. Lovell MA, Markesbery WR. Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res. 2007;85:3036–3040.

    Article  PubMed  CAS  Google Scholar 

  80. Castellani RJ, Lee HG, Perry G, Smith MA. Antioxidant protection and neurodegenerative disease: the role of amyloid-beta and tau. Am J Alzheimers Dis Other Demen. 2006;21:126–130.

    Article  PubMed  Google Scholar 

  81. Ono K, Hamaguchi T, Naiki H, Yamada M. Anti-amyloidogenic effects of antioxidants: implications for the prevention and therapeutics of Alzheimer’s disease. Biochim Biophys Acta. 2006;1762:575–586.

    Article  PubMed  CAS  Google Scholar 

  82. Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 1997;77:1081–1132.

    PubMed  CAS  Google Scholar 

  83. Obregon DF, Rezai-Zadeh K, Bai Y, Sun N, Hou H, Ehrhart J, Zeng J, Mori T, Arendash GW, Shytle D, Town T, Tan J. ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem. 2006;281:16419–16427.

    Article  PubMed  CAS  Google Scholar 

  84. Butterfield DA. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res. 2002;36:1307–1313.

    Article  PubMed  CAS  Google Scholar 

  85. Yatin SM, Varadarajan S, Butterfield DA. Vitamin E prevents Alzheimer’s amyloid beta-peptide (1-42)-induced neuronal protein oxidation and reactive oxygen species production. J Alzheimers Dis. 2000;2:123–131.

    PubMed  CAS  Google Scholar 

  86. Zhu WG, Srinivasan K, Dai Z, Duan W, Druhan LJ, Ding H, Yee L, Villalona-Calero MA, Plass C, Otterson GA. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol. 2003;23:4056–4065.

    Article  PubMed  CAS  Google Scholar 

  87. Clark SJ, Harrison J, Molloy PL. Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene. 1997;195:67–71.

    Article  PubMed  CAS  Google Scholar 

  88. Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med. 2009;46:1241–1249.

    Article  PubMed  CAS  Google Scholar 

  89. Turk PW, Laayoun A, Smith SS, Weitzman SA. DNA adduct 8-hydroxyl-2-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis. 1995;16:1253–1255.

    Article  PubMed  CAS  Google Scholar 

  90. Weitzman SA, Turk PW, Milkowski DH, Kozlowski K. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci USA. 1994;91:1261–1264.

    Article  PubMed  CAS  Google Scholar 

  91. Cerda S, Weitzman SA. Influence of oxygen radical injury on DNA methylation. Mutat Res. 1997;386:141–152.

    Article  PubMed  CAS  Google Scholar 

  92. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008;266:6–11.

    Article  PubMed  CAS  Google Scholar 

  93. Bolin C, Stedeford T, Cardozo-Pelaez F. Single extraction protocol for the analysis of 8-hydroxy-2-deoxyguanosine (oxo8dG) and the associated activity of 8-oxoguanine DNA glycosylase. J Neurosci Methods. 2004;136f:69–76.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to express our sincere gratitude to the thoughtful comments and suggestions by Professor D. Lahiri in the development of this model. We also would like to thank Dr. Jinfang Wu and Hassan Siddiqi in performing some of the modeling experiments and Remi Dosunmu for editing the manuscript. This research was supported by the National Institute of Environmental Health Sciences (NIEHS) and the National Institute of Aging through grants (ES013022 and AG027246) awarded to N.H.Z.. The research core facility at URI was funded (P20RR016457) by the National Center for Research Resources (NCRR), a component of NIH. This work was also supported by a grant from the National Institute of Aging (AG031184) awarded to F.C. and by support he has received from NCRR (P20 RR015583 and P20RRP20RR017670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser H. Zawia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LCC

About this chapter

Cite this chapter

Zawia, N.H., Cardozo-Pelaez, F. (2010). An Epigenetic Model for Susceptibility to Oxidative DNA Damage in the Aging Brain and Alzheimer’s Disease. In: Bondy, S., Maiese, K. (eds) Aging and Age-Related Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-602-3_22

Download citation

Publish with us

Policies and ethics