Skip to main content

Strategies to Insulate Lentiviral Vector-Expressed Transgenes

  • Protocol
  • First Online:
Lentivirus Gene Engineering Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 614))

Abstract

Lentiviruses are capable of infecting many cells irrespective of their cycling status, stably inserting DNA copies of the viral RNA genomes into host chromosomes. This property has led to the development of lentiviral vectors for high-efficiency gene transfer to a wide variety of cell types, from slowly proliferating hematopoietic stem cells to terminally differentiated neurons. Regardless of their advantage over gammaretroviral vectors, which can only introduce transgenes into target cells that are actively dividing, lentiviral vectors are still susceptible to chromosomal position effects that result in transgene silencing or variegated expression. In this chapter, various genetic regulatory elements are described that can be incorporated within lentiviral vector backbones to minimize the influences of neighboring chromatin on single-copy transgene expression. The modifications include utilization of strong internal enhancer-promoter sequences, addition of scaffold/matrix attachment regions, and flanking the transcriptional unit with chromatin domain insulators. Protocols are provided to evaluate the performance as well as the relative biosafety of lentiviral vectors containing these elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawley, R. G. (2001) Progress toward vector design for hematopoietic stem cell gene therapy. Curr. Gene Ther. 1, 1-17.

    Article  PubMed  CAS  Google Scholar 

  2. Miller, D. G., Adam, M. A., and Miller, A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol. 10, 4239-42.

    PubMed  CAS  Google Scholar 

  3. Lewis, P. F. and Emerman, M. (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510-6.

    PubMed  CAS  Google Scholar 

  4. Yamashita, M., Perez, O., Hope, T. J., and Emerman, M. (2007) Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog. 3, 1502-10.

    Article  PubMed  CAS  Google Scholar 

  5. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H. et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263-7.

    Article  PubMed  CAS  Google Scholar 

  6. Ramezani, A. and Hawley, R. G. (2002) Overview of the HIV-1 lentiviral vector system. Curr. Protoc. Mol. Biol. 16.21, 1-15.

    Google Scholar 

  7. Speers, W. C., Gautsch, J. W., and Dixon, F. J. (1980) Silent infection of murine embryonal carcinoma cells by Moloney murine leukemia virus. Virology 105, 241-4.

    Article  PubMed  CAS  Google Scholar 

  8. Jahner, D., Stuhlmann, H., Stewart, C. L., Harbers, K., Lohler, J., Simon, I. et al. (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298, 623-8.

    Article  PubMed  CAS  Google Scholar 

  9. Niwa, O., Yokota, Y., Ishida, H., and Sugahara, T. (1983) Independent mechanisms involved in suppression of the Moloney leukemia virus genome during differentiation of murine teratocarcinoma cells. Cell 32, 1105-13.

    Article  PubMed  CAS  Google Scholar 

  10. Hilberg, F., Stocking, C., Ostertag, W., and Grez, M. (1987) Functional analysis of a retroviral host-range mutant: altered long terminal repeat sequences allow expression in embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 84, 5232-6.

    Article  PubMed  CAS  Google Scholar 

  11. Weiher, H., Barklis, E., Ostertag, W., and Jaenisch, R. (1987) Two distinct sequence elements mediate retroviral gene expression in embryonal carcinoma cells. J. Virol. 61, 2742-6.

    PubMed  CAS  Google Scholar 

  12. Barklis, E., Mulligan, R. C., and Jaenisch, R. (1986) Chromosomal position or virus mutation permits retrovirus expression in embryonal carcinoma cells. Cell 47, 391-9.

    Article  PubMed  CAS  Google Scholar 

  13. Petersen, R., Kempler, G., and Barklis, E. (1991) A stem cell specific silencer in the primer-binding site of a retrovirus. Mol. Cell. Biol. 11, 1214-21.

    PubMed  CAS  Google Scholar 

  14. Wolf, D. and Goff, S. P. (2007) TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 131, 46-57.

    Article  PubMed  CAS  Google Scholar 

  15. Grez, M., Akgün, E., Hilberg, F., and Ostertag, W. (1990) Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells. Proc. Natl. Acad. Sci. USA 87, 9202-6.

    Article  PubMed  CAS  Google Scholar 

  16. Keller, G., Wall, C., Fong, A. Z. C., Hawley, T. S., and Hawley, R. G. (1998) Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood 92, 877-87.

    PubMed  CAS  Google Scholar 

  17. Hawley, R. G., Lieu, F. H. L., Fong, A. Z. C., and Hawley, T. S. (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136-8.

    PubMed  CAS  Google Scholar 

  18. Hawley, R. G., Hawley, T. S., Fong, A. Z. C., Quinto, C., Collins, M., Leonard, J. P. et al. (1996) Thrombopoietic potential and serial repopulating ability of murine hematopoietic stem cells constitutively expressing interleukin-11. Proc. Natl. Acad. Sci. USA 93, 10297-302.

    Article  PubMed  CAS  Google Scholar 

  19. Henikoff, S. (1992) Position effect and related phenomena. Curr. Opin. Genet. Dev. 2, 907-12.

    Article  PubMed  CAS  Google Scholar 

  20. Rivella, S. and Sadelain, M. (1998) Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing. Semin. Hematol. 35, 112-25.

    PubMed  CAS  Google Scholar 

  21. Emery, D. W. and Stamatoyannopoulos, G. (1999) Stem cell gene therapy for the β-chain hemoglobinopathies. Problems and progress. Ann. N. Y. Acad. Sci. 872, 94-107.

    Article  PubMed  CAS  Google Scholar 

  22. Talbert, P. B. and Henikoff, S. (2006) Spreading of silent chromatin: inaction at a distance. Nat. Rev. Genet. 7, 793-803.

    Article  PubMed  CAS  Google Scholar 

  23. Pannell, D., Osborne, C. S., Yao, S., Sukonnik, T., Pasceri, P., Karaiskakis, A. et al. (2000) Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code. EMBO J. 19, 5884-94.

    Article  PubMed  CAS  Google Scholar 

  24. Jordan, A., Defechereux, P., and Verdin, E. (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 20, 1726-38.

    Article  PubMed  CAS  Google Scholar 

  25. Pawliuk, R., Westerman, K. A., Fabry, M. E., Payen, E., Tighe, R., Bouhassira, E. E. et al. (2001) Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294, 2368-71.

    Article  PubMed  CAS  Google Scholar 

  26. Lois, C., Hong, E. J., Pease, S., Brown, E. J., and Baltimore, D. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868-72.

    Article  PubMed  CAS  Google Scholar 

  27. Persons, D. A., Hargrove, P. W., Allay, E. R., Hanawa, H., and Nienhuis, A. W. (2003) The degree of phenotypic correction of murine β-thalassemia intermedia following lentiviral-mediated transfer of a human γ-globin gene is influenced by chromosomal position effects and vector copy number. Blood 101, 2175-83.

    Article  PubMed  CAS  Google Scholar 

  28. Yao, S., Sukonnik, T., Kean, T., Bharadwaj, R. R., Pasceri, P., and Ellis, J. (2004) Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications. Mol. Ther. 10, 27-36.

    Article  PubMed  CAS  Google Scholar 

  29. Ellis, J. (2005) Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum. Gene Ther. 16, 1241-6.

    Article  PubMed  CAS  Google Scholar 

  30. Tamkun, J. W., Deuring, R., Scott, M. P., Kissinger, M., Pattatucci, A. M., Kaufman, T. C. et al. (1992) Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561-72.

    Article  PubMed  CAS  Google Scholar 

  31. Aparicio, O. M. and Gottschling, D. E. (1994) Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 8, 1133-46.

    Article  PubMed  CAS  Google Scholar 

  32. Ramezani, A., Hawley, T. S., and Hawley, R. G. (2006) Stable gammaretroviral vector expression during embryonic stem cell-derived in vitro hematopoietic development. Mol. Ther. 14, 245-54.

    Article  PubMed  CAS  Google Scholar 

  33. Forrester, W. C., Thompson, C., Elder, J. T., and Groudine, M. (1986) A developmentally stable chromatin structure in the human β-globin gene cluster. Proc. Natl. Acad. Sci. USA 83, 1359-63.

    Article  PubMed  CAS  Google Scholar 

  34. Jenuwein, T., Forrester, W. C., Qiu, R. G., and Grosschedl, R. (1993) The immunoglobulin mu enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation. Genes Dev. 7, 2016-32.

    Article  PubMed  CAS  Google Scholar 

  35. Pikaart, M., Feng, J., and Villeponteau, B. (1992) The polyomavirus enhancer activates chromatin accessibility on integration into the HPRT gene. Mol. Cell Biol. 12, 5785-92.

    PubMed  CAS  Google Scholar 

  36. Walters, M. C., Magis, W., Fiering, S., Eidemiller, J., Scalzo, D., Groudine, M. et al. (1996) Transcriptional enhancers act in cis to suppress position-effect variegation. Genes Dev. 10, 185-95.

    Article  PubMed  CAS  Google Scholar 

  37. Francastel, C., Walters, M. C., Groudine, M., and Martin, D. I. (1999) A functional enhancer suppresses silencing of a transgene and prevents its localization close to centrometric heterochromatin. Cell 99, 259-69.

    Article  PubMed  CAS  Google Scholar 

  38. Kim, D. W., Uetsuki, T., Kaziro, Y., Yamaguchi, N., and Sugano, S. (1990) Use of the human elongation factor 1α promoter as a versatile and efficient expression system. Gene 91, 217-23.

    Article  PubMed  CAS  Google Scholar 

  39. Mizushima, S. and Nagata, S. (1990) pEF-BOS, a powerful mammalian expression vector. Nucl. Acids Res. 18, 5322.

    Article  PubMed  CAS  Google Scholar 

  40. Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193-9.

    Article  PubMed  CAS  Google Scholar 

  41. Cheng, L., Du, C., Lavau, C., Chen, S., Tong, J., Chen, B. P. et al. (1998) Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and their lympho-myeloid progeny. Blood 92, 83-92.

    PubMed  CAS  Google Scholar 

  42. Dorrell, C., Gan, O. I., Pereira, D. S., Hawley, R. G., and Dick, J. E. (2000) Expansion of human cord blood CD34+CD38- cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood 95, 102-10.

    PubMed  CAS  Google Scholar 

  43. Ramezani, A., Hawley, T. S., and Hawley, R. G. (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol. Ther. 2, 458-69.

    Article  PubMed  CAS  Google Scholar 

  44. Gao, Z., Golob, J., Tanavde, V. M., Civin, C. I., Hawley, R. G., and Cheng, L. (2001) High levels of transgene expression following transduction of long-term NOD/SCID-repopulating human cells with a modified lentiviral vector. Stem Cells 19, 247-59.

    Article  PubMed  CAS  Google Scholar 

  45. Taboit-Dameron, F., Malassagne, B., Viglietta, C., Puissant, C., Leroux-Coyau, M., Chereau, C. et al. (1999) Association of the 5’HS4 sequence of the chicken β-globin locus control region with human EF1α gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Res. 8, 223-35.

    Article  PubMed  CAS  Google Scholar 

  46. Chang, L.-J., Urlacher, V., Iwakuma, T., Cui, Y., and Zucali, J. (1999) Efficacy and safety analyses of a recombinant human immunodeficiency virus type 1 derived vector system. Gene Ther. 6, 715-28.

    Article  PubMed  CAS  Google Scholar 

  47. Ye, Z.-Q., Qui, P., Burkholder, J. K., Turner, J., Culp, J., Roberts, T. et al. (1998) Cytokine transgene expression and promoter usage in primary CD34+ cells using particle-mediated gene delivery. Hum. Gene Ther. 9, 2197-205.

    Article  PubMed  CAS  Google Scholar 

  48. Araki, K., Imaizumi, T., Okuyama, K., Oike, Y., and Yamamura, K. (1997) Efficiency of recombination by Cre transient expression in embryonic stem cells: comparison of various promoters. J. Biochem. 122, 977-82.

    Article  PubMed  CAS  Google Scholar 

  49. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y. (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Let. 407, 313-9.

    Article  CAS  Google Scholar 

  50. Ramezani, A., Hawley, T. S., and Hawley, R. G. (2003) Performance- and safety-enhanced lentiviral vectors containing the human interferon-β scaffold attachment region and the chicken β-globin insulator. Blood 101, 4717-24.

    Article  PubMed  CAS  Google Scholar 

  51. Bode, J. and Maass, K. (1988) Chromatin domain surrounding the human interferon-β gene as defined by scaffold-attached regions. Biochemistry 27, 4706-11.

    Article  PubMed  CAS  Google Scholar 

  52. Mielke, C., Kohwi, Y., Kohwi-Shigematsu, T., and Bode, J. (1990) Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry 29, 7475-85.

    Article  PubMed  CAS  Google Scholar 

  53. Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C. et al. (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255, 195-7.

    Article  PubMed  CAS  Google Scholar 

  54. Boulikas, T. (1993) Nature of DNA sequences at the attachment regions of genes to nuclear matrix. J. Cell. Biochem. 52, 14-22.

    Article  PubMed  CAS  Google Scholar 

  55. Schubeler, D., Mielke, C., Maass, K., and Bode, J. (1996) Scaffold/mattrix-attached regions act upon transcription in a context-dependent manner. Biochemistry 35, 11160-9.

    Article  PubMed  CAS  Google Scholar 

  56. Benham, C., Kohwi-Shigematsu, T., and Bode, J. (1997) Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J. Mol. Biol. 274, 181-96.

    Article  PubMed  CAS  Google Scholar 

  57. Goetze, S., Baer, A., Winkelmann, S., Nehlsen, K., Seibler, J., Maass, K. et al. (2005) Performance of genomic bordering elements at predefined genomic loci. Mol. Cell. Biol. 25, 2260-72.

    Article  PubMed  CAS  Google Scholar 

  58. Forrester, W. C., Fernandez, L. A., and Grosschedl, R. (1999) Nuclear matrix attachment regions antagonize methylation-dependent repression of long-range enhancer-promoter interactions. Genes Dev. 13, 3003-14.

    Article  PubMed  CAS  Google Scholar 

  59. Fernandez, L. A., Winkler, M., and Grosschedl, R. (2001) Matrix attachment region-dependent function of the immunoglobulin µ enhancer involves histone acetylation at a distance without changes in enhancer occupancy. Mol. Cell. Biol. 21, 196-208.

    Article  PubMed  CAS  Google Scholar 

  60. Agarwal, M., Austin, T. W., Morel, F., Chen, J., Bohnlein, E., and Plavec, I. (1998) Scaffold attachment region-mediated enhancement of retroviral vector expression in primary T cells. J. Virol. 72, 3720-8.

    PubMed  CAS  Google Scholar 

  61. Auten, J., Agarwal, M., Chen, J., Sutton, R., and Plavec, I. (1999) Effect of scaffold attachment region on transgene expression in retrovirus vector-transduced primary T cells and macrophages. Hum. Gene Ther. 10, 1389-99.

    Article  PubMed  CAS  Google Scholar 

  62. Dang, Q., Auten, J., and Plavec, I. (2000) Human β interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy number-dependent expression to a retroviral vector. J. Virol. 74, 2671-8.

    Article  PubMed  CAS  Google Scholar 

  63. Park, F. and Kay, M. A. (2001) Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol. Ther. 4, 164-73.

    Article  PubMed  CAS  Google Scholar 

  64. Bushey, A. M., Dorman, E. R., and Corces, V. G. (2008) Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol. Cell 32, 1-9.

    Article  PubMed  CAS  Google Scholar 

  65. Wallace, J. A. and Felsenfeld, G. (2007) We gather together: insulators and genome organization. Curr. Opin. Genet. Dev. 17, 400-7.

    Article  PubMed  CAS  Google Scholar 

  66. Chung, J. H., Whiteley, M., and Felsenfeld, G. (1993) A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505-14.

    Article  PubMed  CAS  Google Scholar 

  67. Chung, J. H., Bell, A. C., and Felsenfeld, G. (1997) Characterization of the chicken β-globin insulator. Proc. Natl. Acad. Sci. USA 94, 575-80.

    Article  PubMed  CAS  Google Scholar 

  68. Pikaart, M. J., Recillas-Targa, F., and Felsenfeld, G. (1998) Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 12, 2852-62.

    Article  PubMed  CAS  Google Scholar 

  69. Bell, A. C., West, A. G., and Felsenfeld, G. (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387-96.

    Article  PubMed  CAS  Google Scholar 

  70. Burgess-Beusse, B., Farrell, C., Gaszner, M., Litt, M., Mutskov, V., Recillas-Targa, F. et al. (2002) The insulation of genes from external enhancers and silencing chromatin. Proc. Natl. Acad. Sci. USA 99 (Suppl. 4), 16433-7.

    Article  PubMed  CAS  Google Scholar 

  71. Recillas-Targa, F., Pikaart, M. J., Burgess-Beusse, B., Bell, A. C., Litt, M. D., West, A. G. et al. (2002) Position-effect protection and enhancer blocking by the chicken β-globin insulator are separable activities. Proc. Natl. Acad. Sci. USA 99, 6883-8.

    Article  PubMed  CAS  Google Scholar 

  72. Yusufzai, T. M., Tagami, H., Nakatani, Y., and Felsenfeld, G. (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell 13, 291-8.

    Article  PubMed  CAS  Google Scholar 

  73. Kim, T. H., Abdullaev, Z. K., Smith, A. D., Ching, K. A., Loukinov, D. I., Green, R. D. et al. (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231-45.

    Article  PubMed  CAS  Google Scholar 

  74. Splinter, E., Heath, H., Kooren, J., Palstra, R. J., Klous, P., Grosveld, F. et al. (2006) CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev. 20, 2349-54.

    Article  PubMed  CAS  Google Scholar 

  75. Parelho, V., Hadjur, S., Spivakov, M., Leleu, M., Sauer, S., Gregson, H. C. et al. (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422-33.

    Article  PubMed  CAS  Google Scholar 

  76. Wendt, K. S., Yoshida, K., Itoh, T., Bando, M., Koch, B., Schirghuber, E. et al. (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801.

    Article  PubMed  CAS  Google Scholar 

  77. Yao, S., Osborne, C. S., Bharadwaj, R. R., Pasceri, P., Sukonnik, T., Pannell, D. et al. (2003) Retrovirus silencer blocking by the cHS4 insulator is CTCF independent. Nucleic Acids Res. 31, 5317-23.

    Article  PubMed  CAS  Google Scholar 

  78. Ishihara, K., Oshimura, M., and Nakao, M. (2006) CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol. Cell 23, 733-42.

    Article  PubMed  CAS  Google Scholar 

  79. Emery, D. W., Yannaki, E., Tubb, J., and Stamatoyannopoulos, G. (2000) A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc. Natl. Acad. Sci. USA 97, 9150-5.

    Article  PubMed  CAS  Google Scholar 

  80. Rivella, S., Callegari, J. A., May, C., Tan, C. W., and Sadelain, M. (2000) The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J. Virol. 74, 4679-87.

    Article  PubMed  CAS  Google Scholar 

  81. Yannaki, E., Tubb, J., Aker, M., Stamatoyannopoulos, G., and Emery, D. W. (2002) Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors. Mol. Ther. 5, 589-98.

    Article  PubMed  CAS  Google Scholar 

  82. Aker, M., Tubb, J., Groth, A. C., Bukovsky, A. A., Bell, A. C., Felsenfeld, G. et al. (2007) Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum. Gene Ther. 18, 333-43.

    Article  PubMed  CAS  Google Scholar 

  83. Kumar, M., Keller, B., Makalou, N., and Sutton, R. E. (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther. 12, 1893-1905.

    Article  PubMed  CAS  Google Scholar 

  84. Ma, Y., Ramezani, A., Lewis, R., Hawley, R. G., and Thomson, J. A. (2003) High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 21, 111-7.

    Article  PubMed  CAS  Google Scholar 

  85. Vieyra, D. S. and Goodell, M. A. (2007) Pluripotentiality and conditional transgene regulation in human embryonic stem cells expressing insulated tetracycline-ON transactivator. Stem Cells 25, 2559-66.

    Article  PubMed  CAS  Google Scholar 

  86. Kwaks, T. H., Barnett, P., Hemrika, W., Siersma, T., Sewalt, R. G., Satijn, D. P. et al. (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat. Biotechnol. 21, 553-8.

    Article  PubMed  CAS  Google Scholar 

  87. Kissler, S., Stern, P., Takahashi, K., Hunter, K., Peterson, L. B., and Wicker, L. S. (2006) In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nat. Genet. 38, 479-83.

    Article  PubMed  CAS  Google Scholar 

  88. Stern, P., Astrof, S., Erkeland, S. J., Schustak, J., Sharp, P. A., and Hynes, R. O. (2008) A system for cre-regulated RNA interference in vivo. Proc. Natl. Acad. Sci. USA 105, 13895-900.

    Article  PubMed  CAS  Google Scholar 

  89. Baum, C. and Fehse, B. (2003) Mutagenesis by retroviral transgene insertion: risk assessment and potential alternatives. Curr. Opin. Mol. Ther. 5, 458-62.

    PubMed  CAS  Google Scholar 

  90. Nienhuis, A. W., Dunbar, C. E., and Sorrentino, B. P. (2006) Genotoxicity of retroviral integration in hematopoietic cells. Mol. Ther. 13, 1031-49.

    Article  PubMed  CAS  Google Scholar 

  91. Ramezani, A., Hawley, T. S., and Hawley, R. G. (2008) Reducing the genotoxic potential of retroviral vectors. Methods Mol. Biol. 434, 183-203.

    PubMed  CAS  Google Scholar 

  92. Ramezani, A., Hawley, T. S., and Hawley, R. G. (2008) Combinatorial incorporation of enhancer blocking components of the chicken β-globin 5’HS4 and human T-cell receptor α/δ BEAD-1 insulators in self-inactivating retroviral vectors reduces their genotoxic potential. Stem Cells 26, 3257-66.

    Article  PubMed  CAS  Google Scholar 

  93. Modlich, U., Bohne, J., Schmidt, M., Von, K. C., Knoss, S., Schambach, A. et al. (2006) Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 108, 2545-53.

    Article  PubMed  CAS  Google Scholar 

  94. Bevis, B. J. and Glick, B. S. (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20, 83-7.

    Article  PubMed  CAS  Google Scholar 

  95. Ramezani, A. and Hawley, R. G. (2002) Generation of HIV-1-based lentiviral vector particles. Curr. Protoc. Mol. Biol. 16.22, 1-15.

    Google Scholar 

  96. Cai, H. and Levine, M. (1995) Modulation of enhancer-promoter interactions by insulators in the Drosophila embryo. Nature 376, 533-6.

    Article  PubMed  CAS  Google Scholar 

  97. Zhang, F., Thornhill, S. I., Howe, S. J., Ulaganathan, M., Schambach, A., Sinclair, J. et al. (2007) Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 110, 1448-57.

    Article  PubMed  CAS  Google Scholar 

  98. Buzina, A., Lo, M. Y., Moffett, A., Hotta, A., Fussner, E., Bharadwaj, R. R. et al. (2008) β-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy. PLoS Genet. 4, e1000051.

    Article  CAS  Google Scholar 

  99. DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P. M., Miller, J. H., and Calos, M. P. (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7, 379-87.

    PubMed  CAS  Google Scholar 

  100. Gorman, C. M., Gies, D., McCray, G., and Huang, M. (1989) The human cytomegalovirus major immediate early promoter can be trans-activated by adenovirus early proteins. Virology 171, 377-85.

    Article  PubMed  CAS  Google Scholar 

  101. Hawley, T. S., Herbert, D. J., Eaker, S. S., and Hawley, R. G. (2004) Multiparameter flow cytometry of fluorescent protein reporters. Methods Mol. Biol. 263, 219-38.

    PubMed  CAS  Google Scholar 

  102. Gallardo, H. F., Tan, C., Ory, D., and Sadelain, M. (1997) Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 90, 952-7.

    PubMed  CAS  Google Scholar 

  103. Liu, M. L., Winther, B. L., and Kay, M. A. (1996) Pseudotransduction of hepatocytes by using concentrated pseudotyped vesicular stomatitis virus G glycoprotein (VSV-G)-Moloney murine leukemia virus-derived retrovirus vectors: comparison of VSV-G and amphotropic vectors for hepatic gene transfer. J Virol. 70, 2497-502.

    PubMed  CAS  Google Scholar 

  104. Nightingale, S. J., Hollis, R. P., Pepper, K. A., Petersen, D., Yu, X. J., Yang, C. et al. (2006) Transient gene expression by nonintegrating lentiviral vectors. Mol. Ther. 13, 1121-32.

    Article  PubMed  CAS  Google Scholar 

  105. Shimotohno, K. and Temin, H. M. (1982) Loss of intervening sequences in genomic mouse α-globin DNA inserted in an infectious retrovirus vector. Nature 299, 265-8.

    Article  PubMed  CAS  Google Scholar 

  106. Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V., and Cullen, B. R. (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338, 254-7.

    Article  PubMed  CAS  Google Scholar 

  107. Hawley, R. G., Ramezani, A., and Hawley, T. S. (2006) Hematopoietic stem cells. Methods Enzymol. 419, 149-79.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health grants R01HL65519 and R01HL66305, and by an Elaine H. Snyder Cancer Research Award and a King Fahd Endowed Professorship (to R.G.H.) from The George Washington University Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Hawley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ramezani, A., Hawley, R.G. (2010). Strategies to Insulate Lentiviral Vector-Expressed Transgenes. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology, vol 614. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-533-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-533-0_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-532-3

  • Online ISBN: 978-1-60761-533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics