Skip to main content

A Proposed Mitochondrial–Metabolic Mechanism for Initiation and Maintenance of Pulmonary Arterial Hypertension in Fawn-Hooded Rats: The Warburg Model of Pulmonary Arterial Hypertension

  • Conference paper
  • First Online:
Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract

Pulmonary arterial hypertension (PAH) is a disease of the pulmonary vasculature that is characterized by vascular obstruction and progressive right ventricular failure. One hallmark of clinical PAH is its very poor survival, with PAH mortality rates approximating those of many malignancies. The discovery that the fawn-hooded rat strain (FHR) spontaneously develops PAH has allowed for major insights into the pathophysiology of PAH. These findings have revealed that cancer and PAH not only share a similarly poor prognosis but also demonstrate similar resistance to apoptosis and activation of cell proliferation as a major pathophysiologic mechanism. One of the causes for the resistance to apoptosis and increased proliferation of pulmonary vascular smooth muscle cells in PAH is a cancer-like metabolic shift towards a glycolytic metabolism (Warburg effect) and down-regulation of mitochondrial glucose oxidation. This book chapter will review the role of such a metabolic shift in the pathophysiology of PAH and also highlight emerging anti-proliferative PAH therapies that correct the metabolic dysregulation in PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wigley FM, Lima JA, Mayes M, McLain D, Chapin JL, Ward-Able C (2005) The prevalence of undiagnosed pulmonary arterial hypertension in subjects with connective tissue disease at the secondary health care level of community-based rheumatologists (the UNCOVER study). Arthritis Rheum 52:2125-2132

    Article  PubMed  Google Scholar 

  2. Thenappan T, Shah SJ, Rich S, Gomberg-Maitland M (2007) A USA-based registry for pulmonary arterial hypertension: 1982-2006. Eur Respir J 30:1103-1110

    Article  PubMed  CAS  Google Scholar 

  3. Platoshyn O, Zhang S, McDaniel SS, Yuan JX-J (2002) Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 283:C1298-C1305

    PubMed  CAS  Google Scholar 

  4. Pozeg ZI, Michelakis ED, McMurtry MS et al (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037-2044

    Article  PubMed  CAS  Google Scholar 

  5. Remillard CV, Yuan JX-J (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:L49-L67

    Article  PubMed  CAS  Google Scholar 

  6. Merklinger SL, Jones PL, Martinez EC, Rabinovitch M (2005) Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112:423-431

    Article  PubMed  CAS  Google Scholar 

  7. Bonnet S, Archer SL, Allalunis-Turner J et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37-51

    Article  PubMed  CAS  Google Scholar 

  8. Bonnet S, Michelakis ED, Porter CJ et al (2006) An abnormal mitochondrial-HIF-1-Kv channel pathway disrupts oxygen-sensing and triggers pulmonary arterial hypertension (PAH) in fawn-hooded rats: similarities to human PAH. Circulation 113:2630-2641

    Article  PubMed  CAS  Google Scholar 

  9. Yuan JX-J, Aldinger AM, Juhaszova M et al (1998) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98:1400-1406

    Article  PubMed  CAS  Google Scholar 

  10. Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK (2008) Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1(-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 294:H570-H578

    Article  PubMed  CAS  Google Scholar 

  11. Ishikura K, Yamada N, Ito M et al (2006) Beneficial acute effects of rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J 70:174-178

    Article  PubMed  CAS  Google Scholar 

  12. Nagaoka T, Gebb SA, Karoor V et al (2006) Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J Appl Physiol 100:996-1002

    Article  PubMed  CAS  Google Scholar 

  13. Parker TA, Roe G, Grover TR, Abman SH (2006) Rho kinase activation maintains high pulmonary vascular resistance in the ovine fetal lung. Am J Physiol Lung Cell Mol Physiol 291:L976-L982

    Article  PubMed  CAS  Google Scholar 

  14. Xing XQ, Gan Y, Wu SJ, Chen P, Zhou R, Xiang XD (2006) Rho-kinase as a potential therapeutic target for the treatment of pulmonary hypertension. Drug News Perspect 19:517-522

    Article  PubMed  CAS  Google Scholar 

  15. Dorfmuller P, Perros F, Balabanian K, Humbert M (2003) Inflammation in pulmonary arterial hypertension. Eur Respir J 22:358-363

    Article  PubMed  CAS  Google Scholar 

  16. Otterdal K, Andreassen AK, Yndestad A et al (2008) Raised LIGHT levels in pulmonary arterial hypertension: potential role in thrombus formation. Am J Respir Crit Care Med 177:202-207

    Article  PubMed  CAS  Google Scholar 

  17. Voelkel NF, Cool C, Lee SD, Wright L, Geraci MW, Tuder RM (1998) Primary pulmonary hypertension between inflammation and cancer. Chest 114:225S-230S

    Article  PubMed  CAS  Google Scholar 

  18. Herve P, Launay JM, Scrobohaci ML et al (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99:249-254

    Article  PubMed  CAS  Google Scholar 

  19. Christman BW, McPherson CD, Newman JH et al (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327:70-75

    Article  PubMed  CAS  Google Scholar 

  20. Steudel W, Ichinose F, Huang PL et al (1997) Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res 81:34-41

    Article  PubMed  CAS  Google Scholar 

  21. Stewart DJ, Levy RD, Cernacek P, Langleben D (1991) Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med 114:464-469

    PubMed  CAS  Google Scholar 

  22. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF (2005) Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 19(9):1178-1180

    PubMed  CAS  Google Scholar 

  23. Cowan KN, Jones PL, Rabinovitch M (2000) Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest 105:21-34

    Article  PubMed  CAS  Google Scholar 

  24. Krick S, Platoshyn O, Sweeney M, Kim H, Yuan JX-J (2001) Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol 280:C970-C979

    PubMed  CAS  Google Scholar 

  25. Ekhterae D, Platoshyn O, Krick S, Yu Y, McDaniel SS, Yuan JX-J (2001) Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am J Physiol Cell Physiol 281:C157-C165

    PubMed  CAS  Google Scholar 

  26. Michelakis ED, McMurtry MS, Wu X-C et al (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244-250

    Article  PubMed  CAS  Google Scholar 

  27. McMurtry MS, Bonnet S, Wu X et al (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830-840

    Article  PubMed  CAS  Google Scholar 

  28. McMurtry MS, Archer SL, Altieri DC et al (2005) Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 115:1479-1491

    Article  PubMed  CAS  Google Scholar 

  29. Morrell NW, Yang X, Upton PD et al (2001) Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-β1 and bone morphogenetic proteins. Circulation 104:790-795

    Article  PubMed  CAS  Google Scholar 

  30. McMurtry MS, Moudgil R, Hashimoto K, Bonnet S, Michelakis ED, Archer SL (2007) Overexpression of human bone morphogenetic protein receptor 2 does not ameliorate monocrotaline pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 292:L872-L878

    Article  PubMed  CAS  Google Scholar 

  31. Eddahibi S, Raffestin B, Hamon M, Adnot S (2002) Is the serotonin transporter involved in the pathogenesis of pulmonary hypertension? J Lab Clin Med 139:194-201

    Article  PubMed  CAS  Google Scholar 

  32. Guignabert C, Izikki M, Tu LI et al (2006) Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circ Res 98:1323-1330

    Article  PubMed  CAS  Google Scholar 

  33. Schermuly RT, Dony E, Ghofrani HA et al (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811-2821

    Article  PubMed  CAS  Google Scholar 

  34. Archer SL, Souil E, Dinh-Xuan AT et al (1998) Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest 101:2319-2330

    Article  PubMed  CAS  Google Scholar 

  35. Archer SL, Wu X-C, Thébaud B et al (2004) Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction. ionic diversity in smooth muscle cells. Circ Res 95:308-318

    Article  PubMed  CAS  Google Scholar 

  36. Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ (1998) Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351:726-727

    Article  PubMed  CAS  Google Scholar 

  37. Reeve HL, Michelakis E, Nelson DP, Weir EK, Archer SL (2001) Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol 90:2249-2256

    PubMed  CAS  Google Scholar 

  38. Young KA, Ivester C, West J, Carr M, Rodman DM (2006) BMP signaling controls PASMC KV channel expression in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 290:L841-L848

    Article  PubMed  CAS  Google Scholar 

  39. Landsberg JW, Yuan JX-J (2004) Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci 19:44-50

    PubMed  CAS  Google Scholar 

  40. Bonnet S, Rochefort G, Sutendra G et al (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104:11418-11423

    Article  PubMed  CAS  Google Scholar 

  41. Davie NJ, Crossno JT, Jr., Frid MG et al (2004) Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells. Am J Physiol Lung Cell Mol Physiol 286:L668-L678

    Article  PubMed  CAS  Google Scholar 

  42. Deng Z, Morse JH, Slager SL et al (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737-744

    Article  PubMed  CAS  Google Scholar 

  43. Thomson JR, Machado RD, Pauciulo MW et al (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family. J Med Genet 37:741-745

    Article  PubMed  CAS  Google Scholar 

  44. West J, Fagan K, Steudel W et al (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94:1109-1114

    Article  PubMed  CAS  Google Scholar 

  45. Ricciardi MJ, Knight BP, Martinez FJ, Rubenfire M (1998) Inhaled nitric oxide in primary pulmonary hypertension: a safe and effective agent for predicting response to nifedipine. J Am Coll Cardiol 32:1068-1073

    Article  PubMed  CAS  Google Scholar 

  46. Sitbon O, Humbert M, Jagot JL et al (1998) Inhaled nitric oxide as a screening agent for safely identifying responders to oral calcium-channel blockers in primary pulmonary hypertension. Eur Respir J 12:265-270

    Article  PubMed  CAS  Google Scholar 

  47. West J, Cogan J, Geraci M et al (2008) Gene expression in BMPR2 mutation carriers with and without evidence of pulmonary arterial hypertension suggests pathways relevant to disease penetrance. BMC Med Genomics 1:45

    Article  PubMed  Google Scholar 

  48. Kentera D, Susic D, Veljkovic V, Tucakovic G, Koko V (1988) Pulmonary artery pressure in rats with hereditary platelet function defect. Respiration 54:110-114

    Article  PubMed  CAS  Google Scholar 

  49. Cowley AW, Jr., Liang M, Roman RJ, Greene AS, Jacob HJ (2004) Consomic rat model systems for physiological genomics. Acta Physiol Scand 181:585-592

    Article  PubMed  CAS  Google Scholar 

  50. Sato K, Webb S, Tucker A et al (1992) Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat. Am Rev Respir Dis 145:793-797

    PubMed  CAS  Google Scholar 

  51. Ashmore RC, Rodman DM, Sato K et al (1991) Paradoxical constriction to platelets by arteries from rats with pulmonary hypertension. Am J Physiol 260:H1929-H1934

    PubMed  CAS  Google Scholar 

  52. Bowers R, Cool C, Murphy RC et al (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169:764-769

    Article  PubMed  Google Scholar 

  53. Tuder RM, Chacon M, Alger L et al (2001) Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol 195:367-374

    Article  PubMed  CAS  Google Scholar 

  54. Burke-Wolin T, Wolin MS (1989) H2O2 and cGMP may function as an O2 sensor in the pulmonary artery. J Appl Physiol 66:167-170

    PubMed  CAS  Google Scholar 

  55. Michelakis ED, Hampl V, Nsair A et al (2002) Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90:1307-1315

    Article  PubMed  CAS  Google Scholar 

  56. Wolin MS, Burke TM (1987) Hydrogen peroxide elicits activation of bovine pulmonary arterial soluble guanylate cyclase by a mechanism associated with its metabolism by catalase. Biochem Biophys Res Commun 143:20-25

    Article  PubMed  CAS  Google Scholar 

  57. Michelakis ED, Rebeyka I, Wu X et al (2002) O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res 91:478-486

    Article  PubMed  CAS  Google Scholar 

  58. Guo G, Yan-Sanders Y, Lyn-Cook BD et al (2003) Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol Cell Biol 23:2362-2378

    Article  PubMed  CAS  Google Scholar 

  59. Redout EM, Wagner MJ, Zuidwijk MJ et al (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75:770-781

    Article  PubMed  CAS  Google Scholar 

  60. Liu JQ, Zelko IN, Erbynn EM, Sham JSK, Folz RJ (2006) Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290:L2-L10

    Article  PubMed  CAS  Google Scholar 

  61. Nozik-Grayck E, Suliman HB, Majka S et al (2008) Lung EC-SOD overexpression attenuates hypoxic induction of Egr-1 and chronic hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 295:L422-L430

    Article  PubMed  CAS  Google Scholar 

  62. Li N, Oberley TD, Oberley LW, Zhong W (1998) Overexpression of manganese superoxide dismutase in DU145 human prostate carcinoma cells has multiple effects on cell phenotype. Prostate 35:221-233

    Article  PubMed  CAS  Google Scholar 

  63. Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B (1992) SOD2: a new type of tumor-suppressor gene? Int J Cancer 51:476-480

    Article  PubMed  CAS  Google Scholar 

  64. Hodge DR, Xiao W, Peng B, Cherry JC, Munroe DJ, Farrar WL (2005) Enforced expression of superoxide dismutase 2/manganese superoxide dismutase disrupts autocrine interleukin-6 stimulation in human multiple myeloma cells and enhances dexamethasone-induced apoptosis. Cancer Res 65:6255-6263

    Article  PubMed  CAS  Google Scholar 

  65. Hurt EM, Thomas SB, Peng B, Farrar WL (2007) Molecular consequences of SOD2 expression in epigenetically silenced pancreatic carcinoma cell lines. Br J Cancer 97:1116-1123

    Article  PubMed  CAS  Google Scholar 

  66. Hurt EM, Thomas SB, Peng B, Farrar WL (2007) Integrated molecular profiling of SOD2 expression in multiple myeloma. Blood 109:3953-3962

    Article  PubMed  CAS  Google Scholar 

  67. Hitchler MJ, Oberley LW, Domann FE (2008) Epigenetic silencing of SOD2 by histone modifications in human breast cancer cells. Free Radic Biol Med 45(11):1573-1580

    Article  PubMed  CAS  Google Scholar 

  68. Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31:2305-2312

    Article  PubMed  CAS  Google Scholar 

  69. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035-4040

    Article  PubMed  CAS  Google Scholar 

  70. Archer SL, Huang J, Henry T, Peterson D, Weir EK (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ Res 73:1100-1112

    Article  PubMed  CAS  Google Scholar 

  71. Schroder E, Eaton P (2008) Hydrogen peroxide as an endogenous mediator and exogenous tool in cardiovascular research: issues and considerations. Curr Opin Pharmacol 8:153-159

    Article  PubMed  Google Scholar 

  72. Archer SL, Will JA, Weir EK (1986) Redox status in the control of pulmonary vascular tone. Herz 11:127-141

    PubMed  CAS  Google Scholar 

  73. Archer SL, Nelson DP, Weir EK (1989) Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung. J Appl Physiol 67:1903-1911

    PubMed  CAS  Google Scholar 

  74. Archer SL, Weir EK, Reeve HL, Michelakis E (2000) Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol 475:219-240

    PubMed  CAS  Google Scholar 

  75. Archer SL, Michelakis ED, Thebaudt B et al (2006) A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system. Novartis Found Symp 272:157-171; discussion 71-75, 214-217

    Article  PubMed  CAS  Google Scholar 

  76. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222-230

    Article  PubMed  CAS  Google Scholar 

  77. Semenza GL (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96:1173-1177; discussion 0-2

    Article  PubMed  CAS  Google Scholar 

  78. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177-185

    Article  PubMed  Google Scholar 

  79. Shimoda LA, Manalo DJ, Sham JSK, Semenza GL, Sylvester JT (2001) Partial HIF-1α deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 281:L202-L208

    PubMed  CAS  Google Scholar 

  80. Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253-32259

    Article  PubMed  CAS  Google Scholar 

  81. Wang GL, Jiang BH, Semenza GL (1995) Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem Biophys Res Commun 212:550-556

    Article  PubMed  CAS  Google Scholar 

  82. Roche TE, Baker JC, Yan X et al (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol 70:33-75

    Article  PubMed  CAS  Google Scholar 

  83. Mayers RM, Leighton B, Kilgour E (2005) PDH kinase inhibitors: a novel therapy for Type II diabetes? Biochem Soc Trans 33:367-370

    Article  PubMed  CAS  Google Scholar 

  84. Freeman BA, Crapo JD (1981) Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 256:10986-10992

    PubMed  CAS  Google Scholar 

  85. Morrell JA, Orme J, Butlin RJ, Roche TE, Mayers RM, Kilgour E (2003) AZD7545 is a selective inhibitor of pyruvate dehydrogenase kinase 2. Biochem Soc Trans 31:1168-1170

    Article  PubMed  CAS  Google Scholar 

  86. Silverman LR, Mufti GJ (2005) Methylation inhibitor therapy in the treatment of myelodysplastic syndrome. Nat Clin Pract Oncol 2(Suppl 1):S12-S23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Harold Hines Jr. Chair in Medicine and NIH-RO1-HL071115.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Rehman, J., Archer, S.L. (2010). A Proposed Mitochondrial–Metabolic Mechanism for Initiation and Maintenance of Pulmonary Arterial Hypertension in Fawn-Hooded Rats: The Warburg Model of Pulmonary Arterial Hypertension. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_11

Download citation

Publish with us

Policies and ethics