Skip to main content

Genetic Animal Models of Depression

  • Protocol
  • First Online:
Transgenic and Mutant Tools to Model Brain Disorders

Part of the book series: Neuromethods ((NM,volume 44))

Abstract

Depression, as part of a larger class of affective disorders, is one of the world’s most deleterious and widespread neurobehavioral diseases. However, much remains to be discovered concerning depression, due to the daunting complexity of its pathological mechanisms and etiology. Various animal models have been proposed over the years, some of which have come into widespread use, particularly in the area of pharmacological screening. By combining behavioral and physiological analyses with mutant and transgenic animal models, researchers are able to determine the role of specific genes and proteins in the pathogenesis of depression. Discussing several behavioral and transgenic/mutant rodent models, this chapter briefly summarizes the current progress in this area of psychiatric research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13-25

    Article  CAS  PubMed  Google Scholar 

  2. Levinson DF (2006) The genetics of depression: a review. Biol Psychiatry 60:84-92

    Article  CAS  PubMed  Google Scholar 

  3. Zimmermann P, Bruckl T, Lieb R, Nocon A, Ising M, Beesdo K et al (2008) The interplay of familial depression liability and adverse events in predicting the first onset of depression during a 10-year follow-up. Biol Psychiatry 63:406-414

    Article  PubMed  Google Scholar 

  4. Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thummler S, Peng XD et al (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9:1134-1141

    Article  CAS  PubMed  Google Scholar 

  5. Zitterl W, Demal U, Aigner M, Lenz G, Urban C, Zapotoczky HG et al (2000) Naturalistic course of obsessive compulsive disorder and comorbid depression. Longitudinal results of a prospective follow-up study of 74 actively treated patients. Psychopathology 33:75-80

    Article  CAS  PubMed  Google Scholar 

  6. Urani A, Chourbaji S, Gass P (2005) Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev 29:805-828

    Article  CAS  PubMed  Google Scholar 

  7. Bessa JM, Mesquita AR, Oliveira M, Pego JM, Cerqueira JJ, Palha JA et al (2009) A trans-dimensional approach to the behavioral aspects of depression. Front Behav Neurosci 3:1

    Article  PubMed  Google Scholar 

  8. Racagni G, Popoli M (2008) Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci 10:385-400

    PubMed  Google Scholar 

  9. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251-3261

    CAS  PubMed  Google Scholar 

  10. Martinowich K, Lu B (2008) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33:73-83

    Article  CAS  PubMed  Google Scholar 

  11. Canli T, Lesch KP (2007) Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci 10:1103-1109

    Article  CAS  PubMed  Google Scholar 

  12. Perona MT, Waters S, Hall FS, Sora I, Lesch KP, Murphy DL et al (2008) Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol 19:566-574

    Article  CAS  PubMed  Google Scholar 

  13. Chourbaji S, Zacher C, Sanchis-Segura C, Dormann C, Vollmayr B, Gass P (2005) Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc 16:70-78

    Article  CAS  PubMed  Google Scholar 

  14. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355-367

    Article  CAS  PubMed  Google Scholar 

  15. Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom F, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 787-798

    Google Scholar 

  16. Kalueff AV, Laporte JL, Murphy DL, Sufka K (2008) Hybridizing behavioral models: a possible solution to some problems in neurophenotyping research? Prog Neuropsychopharmacol Biol Psychiatry 32:1172-1178

    Article  PubMed  Google Scholar 

  17. Kalueff AV, Murphy DL (2007) The Importance of cognitive phenotypes in experimental modeling of animal anxiety and depression. Neural Plasticity 2007:52087

    PubMed  Google Scholar 

  18. Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238-245

    Article  CAS  PubMed  Google Scholar 

  19. Cryan JF, Slattery DA (2007) Animal models of mood disorders: recent developments. Curr Opin Psychiatry 20:1-7

    Article  PubMed  Google Scholar 

  20. Frazer A, Morilak DA (2005) What should animal models of depression model? Neurosci Biobehav Rev 29:515-523

    Article  PubMed  Google Scholar 

  21. Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9:326-357

    Article  CAS  PubMed  Google Scholar 

  22. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319-329

    Article  CAS  Google Scholar 

  23. Crowley JJ, Jones MD, O’Leary OF, Lucki I (2004) Automated tests for measuring the effects of antidepressants in mice. Pharmacol Biochem Behav 78:269-274

    Article  CAS  PubMed  Google Scholar 

  24. Juszczak GR, Sliwa AT, Wolak P, Tymosiak-Zielinska A, Lisowski P, Swiergiel AH (2006) The usage of video analysis system for detection of immobility in the tail suspension test in mice. Pharmacol Biochem Behav 85:332-338

    Article  CAS  PubMed  Google Scholar 

  25. Piato AL, Detanico BC, Jesus JF, Lhullier FL, Nunes DS, Elisabetsky E (2008) Effects of Marapuama in the chronic mild stress model: further indication of antidepressant properties. J Ethnopharmacol 118:300-304

    Article  PubMed  Google Scholar 

  26. Yalcin I, Aksu F, Belzung C (2005) Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. Eur J Pharmacol 514:165-174

    CAS  PubMed  Google Scholar 

  27. Yalcin I, Aksu F, Bodard S, Chalon S, Belzung C (2007) Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behav Pharmacol 18:623-631

    Article  CAS  PubMed  Google Scholar 

  28. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775-790

    Article  CAS  PubMed  Google Scholar 

  29. Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007-2017

    Article  PubMed  Google Scholar 

  30. Jayatissa MN, Bisgaard CF, West MJ, Wiborg O (2008) The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment. Neuropharmacology 54:530-541

    Article  CAS  PubMed  Google Scholar 

  31. Xu Q, Yi LT, Pan Y, Wang X, Li YC, Li JM et al (2008) Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Prog Neuropsychopharmacol Biol Psychiatry 32:715-725

    Article  CAS  PubMed  Google Scholar 

  32. Zhao Z, Wang W, Guo H, Zhou D (2008) Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behav Brain Res 194(1):108-113

    Article  CAS  PubMed  Google Scholar 

  33. Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 70:187-192

    Article  CAS  PubMed  Google Scholar 

  34. Bourin M, Chenu F, Ripoll N, David DJ (2005) A proposal of decision tree to screen putative antidepressants using forced swim and tail suspension tests. Behav Brain Res 164:266-269

    Article  CAS  PubMed  Google Scholar 

  35. Burne TH, Johnston AN, McGrath JJ, Mackay-Sim A (2006) Swimming behaviour and post-swimming activity in Vitamin D receptor knockout mice. Brain Res Bull 69:74-78

    Article  CAS  PubMed  Google Scholar 

  36. Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS, Salton SR et al (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13:1476-1482

    Article  CAS  PubMed  Google Scholar 

  37. Harkin A, Houlihan DD, Kelly JP (2002) Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. J Psychopharmacol 16:115-123

    Article  CAS  PubMed  Google Scholar 

  38. Pothion S, Bizot JC, Trovero F, Belzung C (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155:135-146

    Article  PubMed  Google Scholar 

  39. Willner P, Moreau JL, Nielsen CK, Papp M, Sluzewska A (1996) Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight. Physiol Behav 60:129-134

    Article  CAS  PubMed  Google Scholar 

  40. El Yacoubi M, Vaugeois JM (2007) Genetic rodent models of depression. Curr Opin Pharmacol 7:3-7

    Article  CAS  PubMed  Google Scholar 

  41. Gould TD, Einat H (2007) Animal models of bipolar disorder and mood stabilizer efficacy: a critical need for improvement. Neurosci Biobehav Rev 31:825-831

    Article  CAS  PubMed  Google Scholar 

  42. Gordon JA, Hen R (2004) Genetic approaches to the study of anxiety. Annu Rev Neurosci 27:193-222

    Article  CAS  PubMed  Google Scholar 

  43. Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14(4): 381-92

    Article  CAS  PubMed  Google Scholar 

  44. Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W et al (2005) Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 25:6243-6250

    Article  CAS  PubMed  Google Scholar 

  45. Tronche F, Kellendonk C, Reichardt HM, Schutz G (1998) Genetic dissection of glucocorticoid receptor function in mice. Curr Opin Genet Dev 8:532-538

    Article  CAS  PubMed  Google Scholar 

  46. Reichardt HM, Umland T, Bauer A, Kretz O, Schutz G (2000) Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock. Mol Cell Biol 20:9009-9017

    Article  CAS  PubMed  Google Scholar 

  47. Painsipp E, Herzog H, and Holzer P (2008) Implication of neuropeptide-Y Y2 receptors in the effects of immune stress on emotional, locomotor and social behavior of mice. Neuropharmacology 55(1): 117-26

    Article  CAS  PubMed  Google Scholar 

  48. Painsipp E, Wultsch T, Edelsbrunner ME, Tasan RO (2008) Singewald N, Herzog H, Holzer P, Reduced anxiety-like and depression-related behavior in neuropeptide Y Y4 wreceptor knockout mice. Genes Brain Behav 7(5): 532-42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NARSAD YI Award, Georgetown University Stress Physiology and Research Center (SPaRC), and Tulane University Intramural Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan V. Kalueff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Canavello, P.R., Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Kalueff, A.V. (2010). Genetic Animal Models of Depression. In: Kalueff, A., Bergner, C. (eds) Transgenic and Mutant Tools to Model Brain Disorders. Neuromethods, vol 44. Humana Press. https://doi.org/10.1007/978-1-60761-474-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-474-6_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-473-9

  • Online ISBN: 978-1-60761-474-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics