Skip to main content

Historical Overview of Glycoanalysis

  • Protocol
  • First Online:
Functional Glycomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 600))

Abstract

More than half of all human proteins are glycosylated. Glycosylation defines the adhesive properties of glycoconjugates and it is largely through glycan–protein interactions that cell–cell and cell–pathogen contacts occur. Not surprisingly, considering the central role they play in molecular encounters, glycoprotein and carbohydrate-based drugs and therapeutics represent a greater than $20 billion market. Glycomics, the study of glycan expression in biological systems, relies on effective analytical techniques for correlation of glycan structure with function. This overview summarizes techniques developed historically for glycan characterization as well as recent trends. Derivatization methods key to both traditional and modern approaches for glycoanalysis are described. Monosaccharide compositional analysis is fundamental to any effort to understand glycan structure–function relationships. Chromatographic and electrophoretic separations are key parts of any glycoanalytical workflow. Mass spectrometry and nuclear magnetic resonance are complementary instrumental techniques for glycan analysis. Finally, microarrays are emerging as powerful new tools for dynamic analysis of glycan expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiro, R. G. (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–56R.

    Article  CAS  PubMed  Google Scholar 

  2. Sasisekharan, R., Raman, R., and Prabhakar, V. (2006) Glycomics approach to structure-function relationships of glycosaminoglycans. Annu. Rev. Biomed. Eng. 8, 181–231.

    Article  CAS  PubMed  Google Scholar 

  3. Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., and Marth, G. (1999) Essentials of Glycobiology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  4. Abeijon, C. and Hirschberg, C. B. (1987) Subcellular site of synthesis of the N-acetylgalactosamine (alpha 1-0) serine (or threonine) linkage in rat liver. J. Biol. Chem. 262 , 4153–4159.

    CAS  PubMed  Google Scholar 

  5. Amerongen, A. V., Bolscher, J. G., and Veerman, E. C. (1995) Salivary mucins: protective functions in relation to their diversity. Glycobiology 5 , 733–740.

    Article  CAS  PubMed  Google Scholar 

  6. Stults, C. L., Sweeley, C. C., and Macher, B. A. (1989) Glycosphingolipids: structure, biological source, and properties. Methods Enzymol. 179 , 167–214.

    Article  CAS  PubMed  Google Scholar 

  7. Hakomori, S., and Igarashi, Y. (1995) Functional role of glycosphingolipids in cell recognition and signaling. J. Biochem. (Tokyo) 118 , 1091–1103.

    CAS  Google Scholar 

  8. Kawashima, H., Hirose, M., Hirose, J., Nagakubo, D., Plaas, A. H., and Miyasaka, M. (2000) Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J. Biol. Chem. 275 , 35448–35456.

    Article  CAS  PubMed  Google Scholar 

  9. Lander, A. D. (1998) Proteoglycans: master regulators of molecular encounter? Matrix Biol. 17 , 465–472.

    Article  CAS  PubMed  Google Scholar 

  10. Trowbridge, J. M., Rudisill, J. A., Ron, D., and Gallo, R. L. (2002) Dermatan sulfate binds and potentiates activity of keratinocyte growth factor (FGF-7). J. Biol. Chem. 277 , 42815–42820.

    Article  CAS  PubMed  Google Scholar 

  11. Torres, C. R., and Hart, G. W. (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259 , 3308–3317.

    CAS  PubMed  Google Scholar 

  12. Hart, G. W., Haltiwanger, R. S., Holt, G. D., and Kelly, W. G. (1989) Glycosylation in the nucleus and cytoplasm. Annu. Rev. Biochem. 58 , 841–874.

    Article  CAS  PubMed  Google Scholar 

  13. Hart, G. W., Kreppel, L. K., Comer, F. I., Arnold, C. S., Snow, D. M., Ye, Z., Cheng, X., DellaManna, D., Caine, D. S., Earles, B. J., Akimoto, Y., Cole, R. N., and Hayes, B. K. (1996) O-GlcNAcylation of key nuclear and cytoskeletal proteins: reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology 6 , 711–716.

    Article  CAS  PubMed  Google Scholar 

  14. Hart, G. W., Housley, M. P., and Slawson, C. (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446 , 1017–1022.

    Article  CAS  PubMed  Google Scholar 

  15. Wong-Madded, S. T., Landry, D., and Guthrie, E. P. (1997) Discovery and Uses of Novel Glycosidases, in Techniques in Glycobiology (Townsend, R., and Hotchkiss, A. T., Eds.) pp. 401–408, Marcel Dekker, Inc., New York.

    Google Scholar 

  16. Tyagarajan, K., Forte, J. G., and Townsend, R. R. (1996) Exoglycosidase purity and linkage specificity: assessment using oligosaccharide substrates and high-pH anion-exchange chromatography with pulsed amperometric detection. Glycobiology 6 , 83–93.

    Article  CAS  PubMed  Google Scholar 

  17. Rudd, P. M., Colominas, C., Royle, L., Murphy, N., Hart, E., Merry, A. H., Hebestreit, H. F., and Dwek, R. A. (2001) A high-performance liquid chromatography based strategy for rapid, sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands. Proteomics 1 , 285–294.

    Article  CAS  PubMed  Google Scholar 

  18. Garner, B., Merry, A. H., Royle, L., Harvey, D. J., Rudd, P. M., and Thillet, J. (2001) Structural elucidation of the N- and O-glycans of human apolipoprotein(a): role of o-glycans in conferring protease resistance. J. Biol. Chem. 276 , 22200–22208.

    Article  CAS  PubMed  Google Scholar 

  19. Royle, L., Mattu, T. S., Hart, E., Langridge, J. I., Merry, A. H., Murphy, N., Harvey, D. J., Dwek, R. A., and Rudd, P. M. (2002) An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal. Biochem. 304 , 70–90.

    Article  CAS  PubMed  Google Scholar 

  20. Wong-Madden, S. T., and Landry, D. (1995) Purification and characterization of novel glycosidases from the bacterial genus Xanthomonas. Glycobiology 5 , 19–28.

    Article  CAS  PubMed  Google Scholar 

  21. Starr, C. M., Irene Masada, R., Hague, C., Skop, E., and Klock, J. C. (1996) Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J. Chromatogr. A 720 , 295–321.

    Article  CAS  PubMed  Google Scholar 

  22. Harvey, D. J., Wing, D. R., Küster, B., and Wilson, I. B. (2000) Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J. Am. Soc. Mass Spectrom. 11 , 564–571.

    Article  CAS  PubMed  Google Scholar 

  23. Ninonuevo, M. R., Park, Y., Yin, H., Zhang, J., Ward, R. E., Clowers, B. H., German, J. B., Freeman, S. L., Killeen, K., Grimm, R., and Lebrilla, C. B. (2006) A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54 , 7471–7480.

    Article  CAS  PubMed  Google Scholar 

  24. Anumula, K. R. (2000) High-sensitivity and high-resolution methods for glycoprotein analysis. Anal. Biochem. 283 , 17–26.

    Article  CAS  PubMed  Google Scholar 

  25. Anumula, K. R. (2006) Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal. Biochem. 350 , 1–23.

    Article  CAS  PubMed  Google Scholar 

  26. Hase, S. (1996) Precolumn derivatization for chromatographic and electrophoretic analyses of carbohydrates. J. Chromatogr. A 720 , 173–182.

    Article  CAS  Google Scholar 

  27. Anumula, K. R. (2006) Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal. Biochem. 350 , 1–23.

    Article  CAS  PubMed  Google Scholar 

  28. Anumula, K. R. (1994) Quantitative determination of monosaccharides in glycoproteins by high-performance liquid chromatography with highly sensitive fluorescence detection. Anal. Biochem. 220 , 275–283.

    Article  CAS  PubMed  Google Scholar 

  29. Bigge, J. C., Patel, T. P., Bruce, J. A., Goulding, P. N., Charles, S. M., and Parekh, R. B. (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230 , 229–238.

    Article  CAS  PubMed  Google Scholar 

  30. Hase, S. (1994) High-performance liquid chromatography of pyridylaminated saccharides. Methods Enzymol. 230 , 225–237.

    Article  CAS  PubMed  Google Scholar 

  31. Birrell, H., Charlwood, J., Lynch, I., North, S., Camilleri, P. (1999) A dual-detection strategy in the chromatographic analysis of 2-aminoacridone derivatized oligosaccharides. Anal. Chem. 71 , 102–108.

    Article  CAS  Google Scholar 

  32. Jackson, P. (1994) The analysis of fluorophore-labeled glycans by high-resolution polyacrylamide gel electrophoresis. Anal. Biochem. 216 , 243–252.

    Article  CAS  PubMed  Google Scholar 

  33. Stefansson, M., and Novotny, M. (1994) Modification of the electrophoretic mobility of neutral and charged polysaccharides. Anal. Chem. 66 , 3466–3471.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng, M. C., Lin, S.L., Wu, S.H., Inoue, S., Inoue, Y. (1998) High-Performance capillary electrophoretic characterization of different types of oligo- and polysialic acid chains. Anal. Chem. 260, 154–159.

    CAS  Google Scholar 

  35. Nashabeh, W. and el Rassi, Z. (1992) Capillary zone electrophoresis of linear and branched oligosaccharides. J. Chromatogr. 600 , 279–287.

    Article  CAS  PubMed  Google Scholar 

  36. Anumula, K. R., and Dhume, S. T. (1998) High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid. Glycobiology 8 , 685–694.

    Article  CAS  PubMed  Google Scholar 

  37. Ciucanu, I., and Kerek, F. (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131 , 209–217.

    Article  CAS  Google Scholar 

  38. Ciucanu, I., and Costello, C. E. (2003) Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J. Am. Chem. Soc. 125 , 16213–16219.

    Article  CAS  PubMed  Google Scholar 

  39. Kang, P., Mechref, Y., Klouckova, I., and Novotny, M. V. (2005) Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun. Mass Spectrom. 19 , 3421–3428.

    Article  CAS  PubMed  Google Scholar 

  40. Kang, P., Mechref, Y., and Novotny, M. V. (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 22 , 721–734.

    Article  CAS  PubMed  Google Scholar 

  41. Ashline, D., Singh, S., Hanneman, A., and Reinhold, V. (2005) Congruent Strategies for Carbohydrate Sequencing. 1. Mining Structural Details by MSn. Anal. Chem. 77 , 6250–6262.

    Article  CAS  PubMed  Google Scholar 

  42. Hardy, M. R. (1989) Monosaccharide analysis of glycoconjugates by high-performance anion-exchange chromatography with pulsed amperometric detection. Methods Enzymol. 179 , 76–82.

    Article  CAS  PubMed  Google Scholar 

  43. Gey, M. H., and Unger, K. K. (1996) A strategy for chromatographic and structural analysis of monosaccharide species from glycoproteins. Anal. Bioanal. Chem. 356 , 488–494.

    Article  CAS  PubMed  Google Scholar 

  44. Karlsson, N. G., and Hansson, G. C. (1995) Analysis of monosaccharide composition of mucin oligosaccharide alditols by high-performance anion-exchange chromatography. Anal. Biochem. 224 , 538–541.

    Article  CAS  PubMed  Google Scholar 

  45. Guttman, A. (1997) Analysis of monosaccharide composition by capillary electrophoresis. J. Chromatogr. A 763 , 271–277.

    Article  CAS  PubMed  Google Scholar 

  46. Lindberg, B., and Lonngren, J. (1978) Methylation analysis of complex carbohydrates: general procedure and application for sequence analysis. Methods Enzymol. 50 , 3–33.

    Article  CAS  PubMed  Google Scholar 

  47. Zaia, J., and Costello, C. E. (2001) Compositional analysis of glycosaminoglycans by electrospray mass spectrometry. Anal. Chem. 73 , 233–239.

    Article  CAS  PubMed  Google Scholar 

  48. Linhardt, R. J., Gu, K. N., Loganathan, D., and Carter, S. R. (1989) Analysis of glycosaminoglycan-derived oligosaccharides using reversed-phase ion-pairing and ion-exchange chromatography with suppressed conductivity detection. Anal. Biochem. 181 , 288–296.

    Article  CAS  PubMed  Google Scholar 

  49. Harvey, D. J. (2000) Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J. Am. Soc. Mass Spectrom. 11 , 900–915.

    Article  CAS  PubMed  Google Scholar 

  50. Charlwood, J., Birrell, H., Gribble, A., Burdes, V., Tolson, D., and Camilleri, P. (2000) A probe for the versatile analysis and characterization of N-linked oligosaccharides. Anal. Chem. 72 , 1453–1461.

    Article  CAS  PubMed  Google Scholar 

  51. Garcia, M. C. (2005) The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography-electrospray mass spectrometry. J. Chromatogr. B 825 , 111–123.

    Article  CAS  Google Scholar 

  52. Kuberan, B., Lech, M., Zhang, L., Wu, Z. L., Beeler, D. L., and Rosenberg, R. (2002) Analysis of Heparan Sulfate Oligosaccharides with Ion Pair-Reverse Phase Capillary High Performance Liquid Chromatography-Microelectrospray Ionization Time-of-Flight Mass Spectrometry. J. Am. Chem. Soc. 124, 8707–8718.

    Article  CAS  PubMed  Google Scholar 

  53. Thanawiroon, C., Rice, K. G., Toida, T., and Linhardt, R. J. (2004) Liquid chromatography–mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. J. Biol. Chem. 279 , 2608–2615.

    Article  CAS  PubMed  Google Scholar 

  54. Henriksen, J., Roepstorff, P., and Ringborg, L. H. (2006) Ion-pairing reversed-phased chromatography–mass spectrometry of heparin. Carbohydr. Res. 341 , 382–387.

    Article  CAS  PubMed  Google Scholar 

  55. Koizumi, K. (1996) High-performance liquid chromatographic separation of carbohydrates on graphitized carbon columns. J. Chromatogr. A 720 , 119–126.

    Article  CAS  PubMed  Google Scholar 

  56. Davies, M., Smith, K. D., Harbin, A. M., and Hounsell, E. F. (1992) High-performance liquid chromatography of oligosaccharide alditols and glycopeptides on a graphitized carbon column. J. Chromatogr. 609 , 125–131.

    Article  CAS  PubMed  Google Scholar 

  57. Karlsson, N. G., Wilson, N. L., Wirth, H. J., Dawes, P., Joshi, H., and Packer, N. H. (2004) Negative ion graphitised carbon nano-liquid chromatography–mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun. Mass Spectrom. 18 , 2282–2292.

    Article  CAS  PubMed  Google Scholar 

  58. Thomsson, K. A., Karlsson, N. G., and Hansson, G. C. (1999) Liquid chromatography-electrospray mass spectrometry as a tool for the analysis of sulfated oligosaccharides from mucin glycoproteins. J. Chromatogr. A 854 , 131–139.

    Article  CAS  PubMed  Google Scholar 

  59. Schulz, B. L., Packer, N. H., and Karlsson, N. G. (2002) Small-scale analysis of O-linked oligosaccharides from glycoproteins and mucins separated by gel electrophoresis. Anal. Chem. 74 , 6088–6097.

    Article  CAS  PubMed  Google Scholar 

  60. Ziegler, A., and Zaia, J. (2006) Separation of heparin oligosaccharides by size-exclusion chromatography. J. Chromatogr. B 837 , 76–86.

    Article  CAS  Google Scholar 

  61. Blom, K. F., Larsen, B. S., and McEwen, C. N. (1999) Determining affinity-selected ligands and estimating binding affinities by online size exclusion chromatography/liquid chromatography-mass spectrometry. J. Comb. Chem. 1 , 82–90.

    Article  CAS  PubMed  Google Scholar 

  62. Van Deemter, J. J., Zuiderweg, F.J., Klinkenberg, A. (1956) Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 5 , 271–289.

    Article  Google Scholar 

  63. Alpert, A. (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 499 , 177–196.

    Article  CAS  Google Scholar 

  64. Churms, S. C. (1996) Recent progress in carbohydrate separation by high-performance liquid chromatography based on hydrophilic interaction. J. Chromatogr. A 720 , 75–91.

    Article  CAS  Google Scholar 

  65. Guile, G. R., Rudd, P. M., Wing, D. R., Prime, S. B., and Dwek, R. A. (1996) A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal. Biochem. 240, 210–226.

    Article  CAS  PubMed  Google Scholar 

  66. Zamfir, A., and Peter-Katalinic, J. (2004) Capillary electrophoresis-mass spectrometry for glycoscreening in biomedical research. Electrophoresis 25, 1949–1963.

    Article  CAS  PubMed  Google Scholar 

  67. Gennaro, L. A., Salas-Solano, O., and Ma, S. (2006) Capillary electrophoresis-mass spectrometry as a characterization tool for therapeutic proteins. Anal. Biochem. 355 , 249–258.

    Article  CAS  PubMed  Google Scholar 

  68. al-Hakim, A. and Linhardt, R. J. (1991) Capillary electrophoresis for the analysis of chondroitin sulfate- and dermatan sulfate-derived disaccharides. Anal. Biochem. 195 , 68–73.

    Article  CAS  PubMed  Google Scholar 

  69. Pervin, A., al-Hakim, A., and Linhardt, R. J. (1994) Separation of glycosaminoglycan-derived oligosaccharides by capillary electrophoresis using reverse polarity. Anal. Biochem. 221 , 182–188.

    Article  CAS  PubMed  Google Scholar 

  70. Lamari, F. N., Militsopoulou, M., Mitropoulou, T. N., Hjerpe, A., and Karamanos, N. K. (2002) Analysis of glycosaminoglycan-derived disaccharides in biologic: samples by capillary electrophoresis and protocol for sequencing glycosaminoglycans. Biomed. Chromatogr. 16 , 95–102.

    Article  CAS  PubMed  Google Scholar 

  71. Militsopoulou, M., Lamari, F. N., Hjerpe, A., and Karamanos, N. K. (2002) Determination of twelve heparin- and heparan sulfate-derived disaccharides as 2-aminoacridone derivatives by capillary zone electrophoresis using ultraviolet and laser-induced fluorescence detection. Electrophoresis 23 , 1104–1109.

    Article  CAS  PubMed  Google Scholar 

  72. Militsopoulou, M., Lecomte, C., Bayle, C., Couderc, F., and Karamanos, N. K. (2003) Laser-induced fluorescence as a powerful detection tool for capillary electrophoretic analysis of heparin/heparan sulfate disaccharides. Biomed. Chromatogr. 17 , 39–41.

    Article  CAS  PubMed  Google Scholar 

  73. Carr, S. A., and Reinhold, V. N. (1984) Structural characterization of sulfated glycosaminoglycans by fast atom bombardment mass spectrometry: application to chondroitin sulfate. J. Carbohydr. Chem. 3, 381–401.

    Article  CAS  Google Scholar 

  74. Ii, T., Okuda, S., Hirano, T., and Ohashi, M. (1994) Tandem mass spectrometry for characterization of unsaturated disaccharides from chondroitin sulfate, dermatan sulfate and hyaluronan. Glycoconj. J. 11 , 123–132.

    Article  CAS  PubMed  Google Scholar 

  75. Juhasz, P., and Biemann, K. (1994) Mass spectrometric molecular-weight determination of highly acidic compounds of biological significance via their complexes with basic polypeptides. Proc. Natl. Acad. Sci. U. S. A. 91 , 4333–4337.

    Article  CAS  PubMed  Google Scholar 

  76. Chai, W., Luo, J., Lim, C. K., and Lawson, A. M. (1998) Characterization of heparin oligosaccharide mixtures as ammonium salts using electrospray mass spectrometry. Anal. Chem. 70, 2060–2066.

    Article  CAS  PubMed  Google Scholar 

  77. Kim, Y. S., Ahn, M. Y., Wu, S. J., Kim, D. H., Toida, T., Teesch, L. M., Park, Y., Yu, G., Lin, J., and Linhardt, R. J. (1998) Determination of the structure of oligosaccharides prepared from acharan sulfate. Glycobiology 8 , 869–877.

    Article  CAS  PubMed  Google Scholar 

  78. Peter-Katalinić, J. (1994) Analysis of glycoconjugates by fast atom bombardment mass spectrometry and related MS techniques. Mass Spectrom. Rev. 13, 77–98.

    Article  Google Scholar 

  79. Domon, B., and Costello, C. E. (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5 , 397–409.

    Article  CAS  Google Scholar 

  80. Huberty, M. C., Vath, J. E., Yu, W., and Martin, S. A. (1993) Site-specific carbohydrate identification in recombinant proteins using MALD-TOF MS. Anal. Chem. 65 , 2791–2800.

    Article  CAS  PubMed  Google Scholar 

  81. Karas, M., and Kruger, R. (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem. Rev. 103 , 427–440.

    Article  CAS  PubMed  Google Scholar 

  82. Zaia, J. (2007) MassSpectrometric Ionization of Carbohydrates, in Encyclopedia of Mass Spectrometry, vol 6 (Gross, M. G., Ed.) Elsevier, New York.

    Google Scholar 

  83. Sturiale, L., Naggi, A., and Torri, G. (2001) MALDI mass spectrometry as a tool for characterizing glycosaminoglycan oligosaccharides and their interaction with proteins. Semin. Thromb. Hemost. 27, 465–472.

    Article  CAS  PubMed  Google Scholar 

  84. Fenn, J. B. (2003) Angew. Chem. Int. Ed. 42 , 3871–3874.

    Article  CAS  Google Scholar 

  85. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246 , 64–71.

    Article  CAS  PubMed  Google Scholar 

  86. Cech, N. B., and Enke, C. G. (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20 , 362–387.

    Article  CAS  PubMed  Google Scholar 

  87. Karas, M., Bahr, U., and Dulcks, T. (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J. Anal. Chem. 366 , 669–676.

    Article  CAS  PubMed  Google Scholar 

  88. Taylor, G. (1964) Disintegration of water droplets in an electric field. Proc. R. Soc. London 280 , 383–397.

    Article  Google Scholar 

  89. Scott, C. T. J., Kosmidis, C., Jia, W. J., Ledingham, K. W. D., and Singhal, R. P. (1994) Formation of atomic-hydrogen in matrix-assisted laser-desorption ionization. Rapid Commun. Mass Spectrom. 8, 829–832.

    Article  CAS  Google Scholar 

  90. Yamashita, M., Fenn, J.B. (1984) Electrospray Ion-Source – Another Variation on the Free-Jet Theme. J. Phy. Chem. 88 , 4451–4459.

    Article  CAS  Google Scholar 

  91. Wolfgang, P., et al. (1953) Naturforsch A 448–450.

    Google Scholar 

  92. Louris, J. N., Cooks, R. G., Syka, J. E. P., Taylor, D. M., Kelley, P. E., Stafford, G. C. Jr., and Todd, J. F. J. (1987) Instrumentation, applications, and energy deposition in quadrupole ion-trap tandem mass spectrometry. Anal. Chem. 59 , 1677–1685.

    Article  CAS  Google Scholar 

  93. Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., and Graham Cooks, R. (2005) The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40 , 430–443.

    Article  CAS  PubMed  Google Scholar 

  94. Kingdon, K. H. (1923) A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Phy. Rev. 21 , 408–418.

    Article  CAS  Google Scholar 

  95. Olsen, J. V., de Godoy, L. M., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., Horning, S., and Mann, M. (2005) Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4 , 2010–2021.

    Article  CAS  PubMed  Google Scholar 

  96. Desaire, H., and Leary, J. (2000) Detection and quantification of the sulfated disaccharides in chondroitin sulfate by electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 11, 916–920.

    Article  CAS  PubMed  Google Scholar 

  97. Egge, H., and Peter-Katalinc, J. (1987) Fast atom bombardment mass spectrometry for structural elucidation of glycoconjugates. Mass Spectrom. Rev. 6 , 331–393.

    Article  CAS  Google Scholar 

  98. Zaia, J. (2004) Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 23 , 161–227.

    Article  CAS  PubMed  Google Scholar 

  99. Domon, B., and Costello, C. E. (1988) Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry 27, 1534–1543.

    Article  CAS  PubMed  Google Scholar 

  100. Duus, J., Gotfredsen, C. H., and Bock, K. (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem. Rev. 100 , 4589–4614.

    Article  CAS  PubMed  Google Scholar 

  101. Yu, F., and Prestegard, J. H. (2006) Structural monitoring of oligosaccharides through 13C enrichment and NMR observation of acetyl groups. Biophys. J. 91 , 1952–1959.

    Article  CAS  PubMed  Google Scholar 

  102. Yu, F., Wolff, J. J., Amster, I. J., and Prestegard, J. H. (2007) Conformational preferences of chondroitin sulfate oligomers using partially oriented NMR spectroscopy of 13C-labeled acetyl groups. J. Am. Chem. Soc. 129 , 13288–13297.

    Article  CAS  PubMed  Google Scholar 

  103. Martin-Pastor, M., and Bush, C. A. (1999) New strategy for the conformational analysis of carbohydrates based on NOE and 13C NMR coupling constants. Application to the flexible polysaccharide of Streptococcus mitis J22. Biochemistry 38 , 8045–8055.

    Article  CAS  PubMed  Google Scholar 

  104. Martin-Pastor, M., and Bush, C. A. (2000) Comparison of the conformation and dynamics of a polysaccharide and of its isolated heptasaccharide repeating unit on the basis of nuclear Overhauser effect, long-range C-C and C-H coupling constants, and NMR relaxation data. Biopolymers 54 , 235–248.

    Article  CAS  PubMed  Google Scholar 

  105. Mulloy, B., and Forster, M. J. (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10 , 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  106. Tian, F., Al-Hashimi, H. M., Craighead, J. L., and Prestegard, J. H. (2001) Conformational analysis of a flexible oligosaccharide using residual dipolar couplings. J. Am. Chem. Soc. 123 , 485–492.

    Article  CAS  PubMed  Google Scholar 

  107. Conrad, H. E. (1998) Heparin Binding Proteins, Academic Press, New York.

    Google Scholar 

  108. Angulo, J., Rademacher, C., Biet, T., Benie, A. J., Blume, A., Peters, H., Palcic, M., Parra, F., and Peters, T. (2006) NMR analysis of carbohydrate-protein interactions. Methods Enzymol. 416 , 12–30.

    Article  CAS  PubMed  Google Scholar 

  109. Kogelberg, H., Solis, D., and Jimenez-Barbero, J. (2003) New structural insights into carbohydrate-protein interactions from NMR spectroscopy. Curr. Opin. Struct. Biol. 13 , 646–653.

    Article  CAS  PubMed  Google Scholar 

  110. Brecker, L., Schwarz, A., Goedl, C., Kratzer, R., Tyl, C. E., and Nidetzky, B. (2008) Studying non-covalent enzyme carbohydrate interactions by STD NMR. Carbohydr. Res. 343, 2153–2161.

    Article  CAS  PubMed  Google Scholar 

  111. Jones, C. (2005) NMR assays for carbohydrate-based vaccines. J. Pharm. Biomed. Anal. 38, 840–850.

    Article  CAS  PubMed  Google Scholar 

  112. Seeberger, P. H., and Werz, D. B. (2007) Synthesis and medical applications of oligosaccharides. Nature 446 , 1046–1051.

    Article  CAS  PubMed  Google Scholar 

  113. Turnbull, J. E., and Linhardt, R. J. (2006) Synthetic sugars enhance the functional glycomics toolkit. Nat. Chem. Biol. 2, 449–450.

    Article  CAS  PubMed  Google Scholar 

  114. Feizi, T., and Chai, W. (2004) Oligosaccharide microarrays to decipher the glyco code. Nat. Rev. Mol. Cell. Biol. 5, 582–588.

    Article  CAS  PubMed  Google Scholar 

  115. Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M. E., Alvarez, R., Bryan, M. C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D. J., Skehel, J. J., van Die, I., Burton, D. R., Wilson, I. A., Cummings, R., Bovin, N., Wong, C. H., and Paulson, J. C. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 101, 17033–17038.

    Article  CAS  PubMed  Google Scholar 

  116. Liang, P. H., Wu, C. Y., Greenberg, W. A., and Wong, C. H. (2008) Glycan arrays: biological and medical applications. Curr. Opin. Chem. Biol. 12 , 86–92.

    Article  CAS  PubMed  Google Scholar 

  117. Blixt, O., Hoffmann, J., Svenson, S., and Norberg, T. (2008) Pathogen specific carbohydrate antigen microarrays: a chip for detection of Salmonella O-antigen specific antibodies. Glycoconj. J. 25, 27–36.

    Article  CAS  PubMed  Google Scholar 

  118. Feizi, T., Fazio, F., Chai, W., and Wong, C.-H. (2003) Carbohydrate microarrays – a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13 , 637–645.

    Article  CAS  PubMed  Google Scholar 

  119. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M., and Chai, W. (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20, 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  120. Liu, Y., Chai, W., Childs, R. A., and Feizi, T. (2006) Preparation of neoglycolipids with ring-closed cores via chemoselective oxime-ligation for microarray analysis of carbohydrate-protein interactions. Methods Enzymol. 415 , 326–340.

    Article  CAS  PubMed  Google Scholar 

  121. Stevens, J., Blixt, O., Paulson, J. C., and Wilson, I. A. (2006) Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat. Rev. Micro. 4 , 857–864.

    Article  CAS  Google Scholar 

  122. Cummings, R. (1994) Use of lectins in analysis of glycoconjugates. Methods Enzymol. 230, 66–86.

    Article  CAS  PubMed  Google Scholar 

  123. Zheng, T., Peelen, D., and Smith, L. M. (2005) Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc. 127 , 9982–9983.

    Article  CAS  PubMed  Google Scholar 

  124. Pilobello, K. T., and Mahal, L. K. (2007) Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol. 11, 300–305.

    Article  CAS  PubMed  Google Scholar 

  125. Song, X., Xia, B., Lasanajak, Y., Smith, D., and Cummings, R. (2008) Quantifiable fluorescent glycan microarrays. Glycoconj. J. 25, 15–25.

    Article  CAS  PubMed  Google Scholar 

  126. Pilobello, K. T., Slawek, D. E., and Mahal, L. K. (2007) A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. Proc. Natl. Acad. Sci. U. S. A. 104 , 11534–11539.

    Article  CAS  PubMed  Google Scholar 

  127. Kuno, A., Uchiyama, N., Koseki-Kuno, S., Ebe, Y., Takashima, S., Yamada, M., and Hirabayashi, J. (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat. Methods 2, 851–856.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors were supported by NIH grant P41RR10888 and NIH contract NO1HV28178.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Bielik, A.M., Zaia, J. (2010). Historical Overview of Glycoanalysis. In: Li, J. (eds) Functional Glycomics. Methods in Molecular Biology, vol 600. Humana Press. https://doi.org/10.1007/978-1-60761-454-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-454-8_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-453-1

  • Online ISBN: 978-1-60761-454-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics