Skip to main content

IgE Interacts with Potent Effector Cells Against Tumors: ADCC and ADCP

  • Chapter
  • First Online:
Cancer and IgE

Abstract

We examine the properties of IgE antibodies which may render them effective against tumors. This may be due to the uniquely high affinity of IgE antibodies for their Fc epsilon (Fcɛ) receptors and the expression of IgE antibodies on potent effector cells. Owing to these properties, IgE antibodies activate effector cell mechanisms that may be different from and stronger than those mediated by antibodies of other classes, thereby inducing superior anti-tumor responses. In examining the potential of IgE–FcɛRI complexes on effector cells to activate effector cells (and describe evidence to-date) we suggest that the interactions of IgE antibodies with tumor-associated antigens on tumor cells and Fc receptors on IgE receptor-bearing cells trigger the association of tumor and effector cells. The outcome of these interactions is effector cell activation and effective tumor cell death by a number of mechanisms including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, and Smurthwaite L (2003) The biology of IGE and the basis of allergic disease. Annu Rev Immunol 21, 579–628

    Article  CAS  PubMed  Google Scholar 

  2. Zhang M, Murphy RF, and Agrawal DK (2007) Decoding IgE Fc receptors. Immunol Res 37, 1–16

    Article  PubMed  Google Scholar 

  3. Liu FT, Hsu DK, Zuberi RI, Hill PN, Shenhav A, Kuwabara I, and Chen SS (1996) Modulation of functional properties of galectin-3 by monoclonal antibodies binding to the non-lectin domains. Biochemistry 35, 6073–6079

    Article  CAS  PubMed  Google Scholar 

  4. Ravetch JV and Kinet JP (1991) Fc receptors. Annu Rev Immunol 9, 457–492

    CAS  PubMed  Google Scholar 

  5. Gounni AS, Lamkhioued B, Delaporte E, Dubost A, Kinet JP, Capron A, and Capron M (1994) The high-affinity IgE receptor on eosinophils: from allergy to parasites or from parasites to allergy? J Allergy Clin Immunol 94, 1214–1216

    Article  CAS  PubMed  Google Scholar 

  6. Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet JP, and Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367, 183–186

    Article  CAS  PubMed  Google Scholar 

  7. Sihra BS, Kon OM, Grant JA, and Kay AB (1997) Expression of high-affinity IgE receptors (Fc epsilon RI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J Allergy Clin Immunol 99, 699–706

    Article  CAS  PubMed  Google Scholar 

  8. Ying S, Barata LT, Meng Q, Grant JA, Barkans J, Durham SR, and Kay AB (1998) High-affinity immunoglobulin E receptor (Fc epsilon RI)-bearing eosinophils, mast cells, macrophages and Langerhans’ cells in allergen-induced late-phase cutaneous reactions in atopic subjects. Immunology 93, 281–288

    Article  CAS  PubMed  Google Scholar 

  9. Wang B, Rieger A, Kilgus O, Ochiai K, Maurer D, Fodinger D, Kinet JP, and Stingl G (1992) Epidermal Langerhans cells from normal human skin bind monomeric IgE via Fc epsilon RI. J Exp Med 175, 1353–1365

    Article  CAS  PubMed  Google Scholar 

  10. Bieber T, de la Salle H, Wollenberg A, Hakimi J, Chizzonite R, Ring J, Hanau D, and de la Salle C (1992) Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI). J Exp Med 175, 1285–1290

    Article  CAS  PubMed  Google Scholar 

  11. Maurer D, Fiebiger S, Ebner C, Reininger B, Fischer GF, Wichlas S, Jouvin MH, Schmitt-Egenolf M, Kraft D, Kinet JP, and Stingl G (1996) Peripheral blood dendritic cells express Fc epsilon RI as a complex composed of Fc epsilon RI alpha- and Fc epsilon RI gamma-chains and can use this receptor for IgE-mediated allergen presentation. J Immunol 157, 607–616

    CAS  PubMed  Google Scholar 

  12. Maurer D, Fiebiger E, Reininger B, Wolff-Winiski B, Jouvin MH, Kilgus O, Kinet JP, and Stingl G (1994) Expression of functional high affinity immunoglobulin E receptors (Fc epsilon RI) on monocytes of atopic individuals. J Exp Med 179, 745–750

    Article  CAS  PubMed  Google Scholar 

  13. Scholl PR and Geha RS (1993) Physical association between the high-affinity IgG receptor (Fc gamma RI) and the gamma subunit of the high-affinity IgE receptor (Fc epsilon RI gamma). Proc Natl Acad Sci USA 90, 8847–8850

    Article  CAS  PubMed  Google Scholar 

  14. Morton HC, van den Herik-Oudijk IE, Vossebeld P, Snijders A, Verhoeven AJ, Capel PJ, and van de Winkel JG (1995) Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. J Biol Chem 270, 29781–29787

    Article  CAS  PubMed  Google Scholar 

  15. Kinet JP (1999) The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol 17, 931–972

    Article  CAS  PubMed  Google Scholar 

  16. Kraft S and Kinet JP (2007) New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7, 365–378

    Article  CAS  PubMed  Google Scholar 

  17. Dombrowicz D, Lin S, Flamand V, Brini AT, Koller BH, and Kinet JP (1998) Allergy-associated FcRbeta is a molecular amplifier of IgE- and IgG-mediated in vivo responses. Immunity 8, 571–529

    Article  CAS  PubMed  Google Scholar 

  18. Lin S, Cicala C, Scharenberg AM, and Kinet JP (1996) The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell 85, 985–995

    Article  CAS  PubMed  Google Scholar 

  19. Donnadieu E, Jouvin MH, and Kinet JP (2000) A second amplifier function for the allergy-associated Fc(epsilon)RI-beta subunit. Immunity 12, 515–523

    Article  CAS  PubMed  Google Scholar 

  20. Kraft S, Rana S, Jouvin MH, and Kinet JP (2004) The role of the FcepsilonRI beta-chain in allergic diseases. Int Arch Allergy Immunol 135, 62–72

    Article  CAS  PubMed  Google Scholar 

  21. Maenaka K, van der Merwe PA, Stuart DI, Jones EY, and Sondermann P (2001) The human low affinity Fcgamma receptors IIa, IIb, and III bind IgG with fast kinetics and distinct thermodynamic properties. J Biol Chem 276, 44898–44904

    Article  CAS  PubMed  Google Scholar 

  22. Matsuda H, Fukui K, Kiso Y, and Kitamura Y (1985) Inability of genetically mast cell-deficient W/Wv mice to acquire resistance against larval Haemaphysalis longicornis ticks. J Parasitol 71, 443–448

    Article  CAS  PubMed  Google Scholar 

  23. Matsuda H, Nakano T, Kiso Y, and Kitamura Y (1987) Normalization of anti-tick response of mast cell-deficient W/Wv mice by intracutaneous injection of cultured mast cells. J Parasitol 73, 155–160

    Article  CAS  PubMed  Google Scholar 

  24. Matsuda H, Watanabe N, Kiso Y, Hirota S, Ushio H, Kannan Y, Azuma M, Koyama H, and Kitamura Y (1990) Necessity of IgE antibodies and mast cells for manifestation of resistance against larval Haemaphysalis longicornis ticks in mice. J Immunol 144, 259–262

    CAS  PubMed  Google Scholar 

  25. Gould HJ and Sutton BJ (2008) IgE in allergy and asthma today. Nat Rev Immunol 8, 205–217

    Article  CAS  PubMed  Google Scholar 

  26. Tokuyama H, Hagi T, Mattarollo SR, Morley J, Wang Q, Fai-So H, Moriyasu F, Nieda M, and Nicol AJ (2008) V gamma 9 V delta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs–rituximab and trastuzumab. Int J Cancer 122, 2526–2534

    Article  CAS  PubMed  Google Scholar 

  27. Clynes RA, Towers TL, Presta LG, and Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6, 443–446

    Article  CAS  PubMed  Google Scholar 

  28. Dyall R, Vasovic LV, Clynes RA, and Nikolic-Zugic J (1999) Cellular requirements for the monoclonal antibody-mediated eradication of an established solid tumor. Eur J Immunol 29, 30–37

    Article  CAS  PubMed  Google Scholar 

  29. Munn DH, McBride M, and Cheung NK (1991) Role of low-affinity Fc receptors in antibody-dependent tumor cell phagocytosis by human monocyte-derived macrophages. Cancer Res 51, 1117–1123

    CAS  PubMed  Google Scholar 

  30. Kudo T, Suzuki M, Katayose Y, Shinoda M, Sakurai N, Kodama H, Ichiyama M, Takemura S, Yoshida H, Saeki H, Saijyo S, Takahashi J, Tominaga T, and Matsuno S (1999) Specific targeting immunotherapy of cancer with bispecific antibodies. Tohoku J Exp Med 188, 275–288

    Article  CAS  PubMed  Google Scholar 

  31. Rouard H, Tamasdan S, Moncuit J, Moutel S, Michon J, Fridman WH, and Teillaud JL (1997) Fc receptors as targets for immunotherapy. Int Rev Immunol 16, 147–185

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe M, Wallace PK, Keler T, Deo YM, Akewanlop C, and Hayes DF (1999) Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210. Breast Cancer Res Treat 53, 199–207

    Article  CAS  PubMed  Google Scholar 

  33. Bevaart L, Goldstein J, Vitale L, Russoniello C, Treml J, Zhang J, Graziano RF, Leusen JH, van de Winkel JG, and Keler T (2006) Direct targeting of genetically modified tumour cells to Fc gammaRI triggers potent tumour cytotoxicity. Br J Haematol 132, 317–325

    Article  CAS  PubMed  Google Scholar 

  34. Yokota A, Kikutani H, Tanaka T, Sato R, Barsumian EL, Suemura M, and Kishimoto T (1988) Two species of human Fc epsilon receptor II (Fc epsilon RII/CD23): tissue-specific and IL-4-specific regulation of gene expression. Cell 55, 611–618

    Article  CAS  PubMed  Google Scholar 

  35. Yokota A, Yukawa K, Yamamoto A, Sugiyama K, Suemura M, Tashiro Y, Kishimoto T, and Kikutani H (1992) Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: identification of the critical cytoplasmic domains. Proc Natl Acad Sci USA 89, 5030–5034

    Article  CAS  PubMed  Google Scholar 

  36. Mossalayi MD, Paul-Eugene N, Ouaaz F, Arock M, Kolb JP, Kilchherr E, Debre P, and Dugas B (1994) Involvement of Fc epsilon RII/CD23 and L-arginine-dependent pathway in IgE-mediated stimulation of human monocyte functions. Int Immunol 6, 931–934

    Article  CAS  PubMed  Google Scholar 

  37. Paul-Eugene N, Mossalayi D, Sarfati M, Yamaoka K, Aubry JP, Bonnefoy JY, Dugas B, and Kolb JP (1995) Evidence for a role of Fc epsilon RII/CD23 in the IL-4-induced nitric oxide production by normal human mononuclear phagocytes. Cell Immunol 163, 314–318

    Article  CAS  PubMed  Google Scholar 

  38. Mossalayi MD, Arock M, Mazier D, Vincendeau P, and Vouldoukis I (1999) The human immune response during cutaneous leishmaniasis: NO problem. Parasitol Today 15, 342–345

    Article  CAS  PubMed  Google Scholar 

  39. Vouldoukis I, Riveros-Moreno V, Dugas B, Ouaaz F, Becherel P, Debre P, Moncada S, and Mossalayi MD (1995) The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci USA 92, 7804–7808

    Article  CAS  PubMed  Google Scholar 

  40. Spittler A, Oehler R, Goetzinger P, Holzer S, Reissner CM, Leutmezer F, Rath V, Wrba F, Fuegger R, Boltz-Nitulescu G, and Roth E (1997) Low glutamine concentrations induce phenotypical and functional differentiation of U937 myelomonocytic cells. J Nutr 127, 2151–2157

    CAS  PubMed  Google Scholar 

  41. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, and Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161, 947–956

    CAS  PubMed  Google Scholar 

  42. Saka B, Aktan M, Sami U, Oner D, Sanem O, and Dincol G (2006) Prognostic importance of soluble CD23 in B-cell chronic lymphocytic leukemia. Clin Lab Haematol 28, 30–35

    Article  CAS  PubMed  Google Scholar 

  43. Karagiannis SN, Bracher MG, Beavil RL, Beavil AJ, Hunt J, McCloskey N, Thompson RG, East N, Burke F, Sutton BJ, Dombrowicz D, Balkwill FR, and Gould HJ (2008) Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells. Cancer Immunol Immunother 57, 247–263

    Article  CAS  PubMed  Google Scholar 

  44. Karagiannis SN, Bracher MG, Hunt J, McCloskey N, Beavil RL, Beavil AJ, Fear DJ, Thompson RG, East N, Burke F, Moore RJ, Dombrowicz DD, Balkwill FR, and Gould HJ (2007) IgE-antibody-dependent immunotherapy of solid tumors: cytotoxic and phagocytic mechanisms of eradication of ovarian cancer cells. J Immunol 179, 2832–2843

    CAS  PubMed  Google Scholar 

  45. Liu FT (2005) Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol 136, 385–400

    Article  CAS  PubMed  Google Scholar 

  46. Frigeri LG and Liu FT (1992) Surface expression of functional IgE binding protein, an endogenous lectin, on mast cells and macrophages. J Immunol 148, 861–867

    CAS  PubMed  Google Scholar 

  47. Zuberi RI, Hsu DK, Kalayci O, Chen HY, Sheldon HK, Yu L, Apgar JR, Kawakami T, Lilly CM, and Liu FT (2004) Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 165, 2045–2053

    CAS  PubMed  Google Scholar 

  48. Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, and Brewer CF (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 279, 10841–10847

    Article  CAS  PubMed  Google Scholar 

  49. van den Brule F, Califice S, and Castronovo V (2004) Expression of galectins in cancer: a critical review. Glycoconj J 19, 537–542

    Article  PubMed  Google Scholar 

  50. Brigati C, Noonan DM, Albini A, and Benelli R (2002) Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis 19, 247–258

    Article  CAS  PubMed  Google Scholar 

  51. Lin EY and Pollard JW (2004) Role of infiltrated leucocytes in tumour growth and spread. Br J Cancer 90, 2053–2058

    Article  CAS  PubMed  Google Scholar 

  52. Crivellato E, Nico B, and Ribatti D (2008) Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269, 1–6

    Article  CAS  PubMed  Google Scholar 

  53. Dabiri S, Huntsman D, Makretsov N, Cheang M, Gilks B, Bajdik C, Gelmon K, Chia S, and Hayes M (2004) The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol 17, 690–695

    Article  PubMed  Google Scholar 

  54. Aaltomaa S, Lipponen P, Papinaho S, and Kosma VM (1993) Mast cells in breast cancer. Anticancer Res 13, 785–788

    CAS  PubMed  Google Scholar 

  55. Glimelius I, Edstrom A, Fischer M, Nilsson G, Sundstrom C, Molin D, Amini RM, and Enblad G (2005) Angiogenesis and mast cells in Hodgkin lymphoma. Leukemia 19, 2360–2362

    Article  CAS  PubMed  Google Scholar 

  56. Molin D, Edstrom A, Glimelius I, Glimelius B, Nilsson G, Sundstrom C, and Enblad G (2002) Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br J Haematol 119, 122–124

    Article  PubMed  Google Scholar 

  57. Ribatti D, Ennas MG, Vacca A, Ferreli F, Nico B, Orru S, and Sirigu P (2003) Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur J Clin Invest 33, 420–425

    Article  CAS  PubMed  Google Scholar 

  58. Ribatti D, Finato N, Crivellato E, Guidolin D, Longo V, Mangieri D, Nico B, Vacca A, and Beltrami CA (2007) Angiogenesis and mast cells in human breast cancer sentinel lymph nodes with and without micrometastases. Histopathology 51, 837–842

    Article  CAS  PubMed  Google Scholar 

  59. Kankkunen JP, Harvima IT, and Naukkarinen A (1997) Quantitative analysis of tryptase and chymase containing mast cells in benign and malignant breast lesions. Int J Cancer 72, 385–388

    Article  CAS  PubMed  Google Scholar 

  60. Thoresen S, Thorsen T, and Hartveit F (1982) Does progesterone receptor in human breast cancer reflect the mast-cell content of the tumour tissue? Br J Cancer 45, 618–620

    CAS  PubMed  Google Scholar 

  61. Ribatti D, Crivellato E, Roccaro AM, Ria R, and Vacca A (2004) Mast cell contribution to angiogenesis related to tumour progression. Clin Exp Allergy 34, 1660–1664

    Article  CAS  PubMed  Google Scholar 

  62. Norrby K (2000) Oral administration of a nitric oxide synthase inhibitor enhances de novo mammalian angiogenesis mediated by TNF-alpha, saline and mast-cell secretion. APMIS 108, 496–502

    Article  CAS  PubMed  Google Scholar 

  63. Grutzkau A, Kruger-Krasagakes S, Kogel H, Moller A, Lippert U, and Henz BM (1997) Detection of intracellular interleukin-8 in human mast cells: flow cytometry as a guide for immunoelectron microscopy. J Histochem Cytochem 45, 935–945

    CAS  PubMed  Google Scholar 

  64. Grutzkau A, Kruger-Krasagakes S, Baumeister H, Schwarz C, Kogel H, Welker P, Lippert U, Henz BM, and Moller A (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 9, 875–884

    CAS  PubMed  Google Scholar 

  65. Qu Z, Liebler JM, Powers MR, Galey T, Ahmadi P, Huang XN, Ansel JC, Butterfield JH, Planck SR, and Rosenbaum JT (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 147, 564–573

    CAS  PubMed  Google Scholar 

  66. Blair RJ, Meng H, Marchese MJ, Ren S, Schwartz LB, Tonnesen MG, and Gruber BL (1997) Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 99, 2691–2700

    Article  CAS  PubMed  Google Scholar 

  67. Crivellato E, Beltrami CA, Mallardi F, and Ribatti D (2004) The mast cell: an active participant or an innocent bystander? Histol Histopathol 19, 259–270

    CAS  PubMed  Google Scholar 

  68. Valent P, Agis H, Sperr W, Sillaber C, and Horny HP (2008) Diagnostic and prognostic value of new biochemical and immunohistochemical parameters in chronic myeloid leukemia. Leuk Lymphoma 49, 635–638

    Article  CAS  PubMed  Google Scholar 

  69. Di Carlo E, Modesti A, Coletti A, Colombo MP, Giovarelli M, Forni G, Diodoro MG, and Musiani P (1998) Interaction between endothelial cells and the secreted cytokine drives the fate of an IL4- or an IL5-transduced tumour. J Pathol 186, 390–397

    Article  CAS  PubMed  Google Scholar 

  70. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, and Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56, 4625–4629

    CAS  PubMed  Google Scholar 

  71. Lewis CE and Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66, 605–612

    Article  CAS  PubMed  Google Scholar 

  72. Bingle L, Brown NJ, and Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196, 254–265

    Article  CAS  PubMed  Google Scholar 

  73. Mantovani A, Sozzani S, Locati M, Allavena P, and Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549–555

    Article  CAS  PubMed  Google Scholar 

  74. Leek RD and Harris AL (2002) Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7, 177–189

    Article  PubMed  Google Scholar 

  75. Elgert KD, Alleva DG, and Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64, 275–290

    CAS  PubMed  Google Scholar 

  76. Weigert A and Brune B (2008) Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide 19, 95–102

    Article  CAS  PubMed  Google Scholar 

  77. Keller R, Geiges M, and Keist R (1990) L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res 50, 1421–1425

    CAS  PubMed  Google Scholar 

  78. Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW, Nathan C, and Fidler IJ (1995) Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 181, 1333–1343

    Article  CAS  PubMed  Google Scholar 

  79. Masztalerz A, Van Rooijen N, Den Otter W, and Everse LA (2003) Mechanisms of macrophage cytotoxicity in IL-2 and IL-12 mediated tumour regression. Cancer Immunol Immunother 52, 235–242

    CAS  PubMed  Google Scholar 

  80. Dirkx AE, Oude Egbrink MG, Wagstaff J, and Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80, 1183–1196

    Article  CAS  PubMed  Google Scholar 

  81. Houghton AM, Grisolano JL, Baumann ML, Kobayashi DK, Hautamaki RD, Nehring LC, Cornelius LA, and Shapiro SD (2006) Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66, 6149–6155

    Article  CAS  PubMed  Google Scholar 

  82. Huang Y, Lee C, Borgstrom P, and Gjerset RA (2007) Macrophage-mediated bystander effect triggered by tumor cell apoptosis. Mol Ther 15, 524–533

    Article  CAS  PubMed  Google Scholar 

  83. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, and Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205, 1261–1268

    Article  CAS  PubMed  Google Scholar 

  84. Colombo N, Peccatori F, Paganin C, Bini S, Brandely M, Mangioni C, Mantovani A, and Allavena P (1992) Anti-tumor and immunomodulatory activity of intraperitoneal IFN-gamma in ovarian carcinoma patients with minimal residual tumor after chemotherapy. Int J Cancer 51, 42–46

    Article  CAS  PubMed  Google Scholar 

  85. Thomsen LL and Miles DW (1998) Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 17, 107–118

    Article  CAS  PubMed  Google Scholar 

  86. Dugas B, Mossalayi MD, Damais C, and Kolb JP (1995) Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol Today 16, 574–580

    Article  CAS  PubMed  Google Scholar 

  87. Perlmann P, Perlmann H, ElGhazali G, and Blomberg MT (1999) IgE and tumor necrosis factor in malaria infection. Immunol Lett 65, 29–33

    Article  CAS  PubMed  Google Scholar 

  88. Fremeaux-Bacchi V, Aubry JP, Bonnefoy JY, Kazatchkine MD, Kolb JP, and Fischer EM (1998) Soluble CD21 induces activation and differentiation of human monocytes through binding to membrane CD23. Eur J Immunol 28, 4268–4274

    Article  CAS  PubMed  Google Scholar 

  89. Iwasaki K, Torisu M, and Fujimura T (1986) Malignant tumor and eosinophils. I. Prognostic significance in gastric cancer. Cancer 58, 1321–1327

    Article  CAS  PubMed  Google Scholar 

  90. Samoszuk M (1997) Eosinophils and human cancer. Histol Histopathol 12, 807–812

    CAS  PubMed  Google Scholar 

  91. Ishibashi S, Ohashi Y, Suzuki T, Miyazaki S, Moriya T, Satomi S, and Sasano H (2006) Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res 26, 1419–1424

    PubMed  Google Scholar 

  92. Fernandez-Acenero MJ, Galindo-Gallego M, Sanz J, and Aljama A (2000) Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer 88, 1544–1548

    Article  CAS  PubMed  Google Scholar 

  93. Gleich GJ and Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39, 177–253

    Article  CAS  PubMed  Google Scholar 

  94. Newton DL and Rybak SM (1998) Unique recombinant human ribonuclease and inhibition of Kaposi’s sarcoma cell growth. J Natl Cancer Inst 90, –1791

    Article  CAS  PubMed  Google Scholar 

  95. Ellyard JI, Simson L, and Parish CR (2007) Th2-mediated anti-tumour immunity: friend or foe? Tissue Antigens 70, 1–11

    Article  CAS  PubMed  Google Scholar 

  96. Furbert-Harris PM, Laniyan I, Harris D, Dunston GM, Vaughn T, Abdelnaby A, Parish-Gause D, and Oredipe OA (2003) Activated eosinophils infiltrate MCF-7 breast multicellular tumor spheroids. Anticancer Res 23, 71–78

    PubMed  Google Scholar 

  97. Tepper RI, Pattengale PK, and Leder P (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57, 503–512

    Article  CAS  PubMed  Google Scholar 

  98. Rothenberg ME, Luster AD, and Leder P (1995) Murine eotaxin: an eosinophil chemoattractant inducible in endothelial cells and in interleukin 4-induced tumor suppression. Proc Natl Acad Sci USA 92, 8960–8964

    Article  CAS  PubMed  Google Scholar 

  99. Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, Dimina D, Ochkur SI, O’Neill K, Colbert D, Lombari TR, Constant S, McGarry MP, Lee JJ, and Lee NA (2006) Pivotal advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol 79, 1131–1139

    Article  CAS  PubMed  Google Scholar 

  100. Mattes J, Hulett M, Xie W, Hogan S, Rothenberg ME, Foster P, and Parish C (2003) Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med 197, 387–393

    Article  CAS  PubMed  Google Scholar 

  101. Kayaba H, Dombrowicz D, Woerly G, Papin JP, Loiseau S, and Capron M (2001) Human eosinophils and human high affinity IgE receptor transgenic mouse eosinophils express low levels of high affinity IgE receptor, but release IL-10 upon receptor activation. J Immunol 167, 995–1003

    CAS  PubMed  Google Scholar 

  102. Dombrowicz D, Quatannens B, Papin JP, Capron A, and Capron M (2000) Expression of a functional Fc epsilon RI on rat eosinophils and macrophages. J Immunol 165, –1271

    CAS  PubMed  Google Scholar 

  103. Nutten S, Papin JP, Woerly G, Dunne DW, MacGregor J, Trottein F, and Capron M (1999) Selectin and Lewis(x) are required as co-receptors in antibody-dependent cell-mediated cytotoxicity of human eosinophils to Schistosoma mansoni schistosomula. Eur J Immunol 29, 799–808

    Article  CAS  PubMed  Google Scholar 

  104. Tepper RI, Coffman RL, and Leder P (1992) An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 257, 548–551

    Article  CAS  PubMed  Google Scholar 

  105. Pericle F, Giovarelli M, Colombo MP, Ferrari G, Musiani P, Modesti A, Cavallo F, Di Pierro F, Novelli F, and Forni G (1994) An efficient Th2-type memory follows CD8+ lymphocyte-driven and eosinophil-mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. J Immunol 153, 5659–5673

    CAS  PubMed  Google Scholar 

  106. Esendagli G, Bruderek K, Goldmann T, Busche A, Branscheid D, Vollmer E, and Brandau S (2008) Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer. Lung Cancer 59, 32–40

    Article  CAS  PubMed  Google Scholar 

  107. Gu T, Kilinc MO, and Egilmez NK (2008) Transient activation of tumor-associated T-effector/memory cells promotes tumor eradication via NK-cell recruitment: minimal role for long-term T-cell immunity in cure of metastatic disease. Cancer Immunol Immunother 57, 997–1005

    Article  CAS  PubMed  Google Scholar 

  108. Jurisic V, Srdic T, Konjevic G, Markovic O, and Colovic M (2007) Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol 24, 312–317

    Article  PubMed  Google Scholar 

  109. Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, Cabaret V, Fermeaux V, Bertheau P, Garnier J, Jeannin JF, and Coudert B (2006) Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94, 259–267

    Article  CAS  PubMed  Google Scholar 

  110. Miyajima I, Dombrowicz D, Martin TR, Ravetch JV, Kinet JP, and Galli SJ (1997) Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J Clin Invest 99, 901–914

    Article  CAS  PubMed  Google Scholar 

  111. Lorenzen J, Lewis CE, McCracken D, Horak E, Greenall M, and McGee JO (1991) Human tumour-associated NK cells secrete increased amounts of interferon-gamma and interleukin-4. Br J Cancer 64, 457–462

    CAS  PubMed  Google Scholar 

  112. Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, and Blay JY (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92, 4778–4791

    CAS  PubMed  Google Scholar 

  113. Menetrier-Caux C, Thomachot MC, Alberti L, Montmain G, and Blay JY (2001) IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res 61, 3096–3104

    CAS  PubMed  Google Scholar 

  114. Bieber T (1997) Fc epsilon RI on human epidermal Langerhans cells: an old receptor with new structure and functions. Int Arch Allergy Immunol 113, 30–34

    Article  CAS  PubMed  Google Scholar 

  115. Luiten RM, Fleuren GJ, Warnaar SO, and Litvinov SV (1996) Target-specific activation of mast cells by immunoglobulin E reactive with a renal cell carcinoma-associated antigen. Lab Invest 74, 467–475

    CAS  PubMed  Google Scholar 

  116. Luiten RM, Warnaar SO, Schuurman J, Pasmans SG, Latour S, Daeron M, Fleuren GJ, and Litvinov SV (1997) Chimeric immunoglobulin E reactive with tumor-associated antigen activates human Fc epsilon RI bearing cells. Hum Antibodies 8, 169–180

    CAS  PubMed  Google Scholar 

  117. Sapino A, Cassoni P, Ferrero E, Bongiovanni M, Righi L, Fortunati N, Crafa P, Chiarle R, and Bussolati G (2003) Estrogen receptor alpha is a novel marker expressed by follicular dendritic cells in lymph nodes and tumor-associated lymphoid infiltrates. Am J Pathol 163, 1313–1320

    CAS  PubMed  Google Scholar 

  118. Dadabayev AR, Sandel MH, Menon AG, Morreau H, Melief CJ, Offringa R, van der Burg SH, Janssen-van Rhijn C, Ensink NG, Tollenaar RA, van de Velde CJ, and Kuppen PJ (2004) Dendritic cells in colorectal cancer correlate with other tumor-infiltrating immune cells. Cancer Immunol Immunother 53, 978–986

    Article  CAS  PubMed  Google Scholar 

  119. Shah S, Divekar AA, Hilchey SP, Cho HM, Newman CL, Shin SU, Nechustan H, Challita-Eid PM, Segal BM, Yi KH, and Rosenblatt JD (2005) Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117, 574–586

    Article  CAS  PubMed  Google Scholar 

  120. Barbera-Guillem E, Nelson MB, Barr B, Nyhus JK, May KF, Jr., Feng L, and Sampsel JW (2000) B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol Immunother 48, 541–549

    Article  CAS  PubMed  Google Scholar 

  121. Tan TT and Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19, 209–216

    Article  CAS  PubMed  Google Scholar 

  122. Gould HJ, Mackay GA, Karagiannis SN, O’Toole CM, Marsh PJ, Daniel BE, Coney LR, Zurawski VR, Jr., Joseph M, Capron M, Gilbert M, Murphy GF, and Korngold R (1999) Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol 29, 3527–3537

    Article  CAS  PubMed  Google Scholar 

  123. Karagiannis SN, Wang Q, East N, Burke F, Riffard S, Bracher MG, Thompson RG, Durham SR, Schwartz LB, Balkwill FR, and Gould HJ (2003) Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol 33, 1030–1040

    Article  CAS  PubMed  Google Scholar 

  124. Bracher M, Gould HJ, Sutton BJ, Dombrowicz D, and Karagiannis SN (2007) Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J Immunol Methods 323, 160–171

    Article  CAS  PubMed  Google Scholar 

  125. Karagiannis P, Singer J, Hunt J, Gan SK, Rudman SM, Mechtcheriakova D, Knittelfelder R, Daniels TR, Hobson PS, Beavil AJ, Spicer J, Nestle FO, Penichet ML, Gould HJ, Jensen-Jarolim E, and Karagiannis SN (2009) Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells. Cancer Immunol Immunother 58, 915–930

    Article  CAS  PubMed  Google Scholar 

  126. Nagy E, Berczi I, and Sehon AH (1991) Growth inhibition of murine mammary carcinoma by monoclonal IgE antibodies specific for the mammary tumor virus. Cancer Immunol Immunother 34, 63–69

    Article  CAS  PubMed  Google Scholar 

  127. Kershaw MH, Darcy PK, Trapani JA, MacGregor D, and Smyth MJ (1998) Tumor-specific IgE-mediated inhibition of human colorectal carcinoma xenograft growth. Oncol Res 10, 133–142

    CAS  PubMed  Google Scholar 

  128. Reali E, Greiner JW, Corti A, Gould HJ, Bottazzoli F, Paganelli G, Schlom J, and Siccardi AG (2001) IgEs targeted on tumor cells: therapeutic activity and potential in the design of tumor vaccines. Cancer Res 61, 5517–5522

    CAS  PubMed  Google Scholar 

  129. Fu SL, Pierre J, Smith-Norowitz TA, Hagler M, Bowne W, Pincus MR, Mueller CM, Zenilman ME, and Bluth MH (2008) Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin Exp Immunol 153, 401–409

    Article  CAS  PubMed  Google Scholar 

  130. Wines BD, Hulett MD, Jamieson GP, Trist HM, Spratt JM, and Hogarth PM (1999) Identification of residues in the first domain of human Fc alpha receptor essential for interaction with IgA. J Immunol 162, 2146–2153

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s, and St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. The authors thank Dr. James Spicer for his support and helpful comments, Professor Andrew P. Grieve for advice on statistical evaluations and Dr. Rebecca Beavil and Ms. Kate Kirwan for expert assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia N. Karagiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Karagiannis, S.N., Nestle, F.O., Gould, H.J. (2010). IgE Interacts with Potent Effector Cells Against Tumors: ADCC and ADCP. In: Penichet, M., Jensen-Jarolim, E. (eds) Cancer and IgE. Humana Press. https://doi.org/10.1007/978-1-60761-451-7_8

Download citation

Publish with us

Policies and ethics