Skip to main content

Monitored Natural Attenuation

  • Protocol
  • First Online:
Bioremediation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 599))

Abstract

Monitored natural attenuation (MNA) is an in situ remediation technology that relies on naturally occurring and demonstrable processes in soil and groundwater which reduce the mass and concentration of the contaminants. Natural attenuation (NA) involves both aerobic and anaerobic degradation of the contaminants due to the fact that oxygen is used up near the core of the contaminant plume. The aerobic and anaerobic microbial processes can be assessed by microbial activity measurements and molecular biology methods in combination with chemical analyses. The sampling and knowledge on the site conditions are of major importance for the linkage of the results obtained to the conditions in situ. Rates obtained from activity measurements can, with certain limitations, be used in modeling of the fate of contaminants whereas most molecular methods mainly give qualitative information on the microbial community and gene abundances. However, molecular biology methods are fast and describe the in situ communities and avoid the biases inherent to activity assays requiring laboratory incubations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EPA. (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites. Office of solid waste and emergency response. Washington DC, 9200.4–17p.

    Google Scholar 

  2. Jørgensen, K.S. (2007) In situ bioremediation. Adv. Appl. Microbiol. 61, 285–305.

    Article  Google Scholar 

  3. Björklöf, K., Salminen, J., Sainio, P., and Jørgensen, K. (2008) Degradation rates of aged petroleum hydrocarbons are likely to be mass transfer dependent in the field. Environ. Geochem. Health 30, 101–107.

    Article  Google Scholar 

  4. Salminen, J.M., Tuomi, P.M., Suortti, A.-M., and Jørgensen, K.S. (2004) Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface. Biodegradation 15, 29–39.

    Article  CAS  Google Scholar 

  5. Salminen, J.M., Hänninen, P.J., Leveinen, J., Lintinen, P.T.J., and Jørgensen, K.S. (2006) Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface. J. Environ. Qual. 35, 1969–2440.

    Article  Google Scholar 

  6. Salminen, J.M., Tuomi, P.M. and Jørgensen, K.S. (2008) Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation. Appl. Biochem. Biotechnol. 151, 638–652.

    Google Scholar 

  7. Tuomi, P.M., Salminen, J.M., and Jørgensen, K.S. (2004) The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. FEMS Microbiol. Ecol. 51, 99–107.

    Article  CAS  Google Scholar 

  8. Haines J., Wrenn B., Holder E., Strohmeier K., Herrington R., and Venosa, A. (1996) Measurement of hydrocarbon-degrading microbial populations by a 96-well plate most-probable-number procedure. J. Ind. Microbiol. 16, 36–41.

    Article  CAS  Google Scholar 

  9. Teske, A., Wawer, C., Muyzer, G., and Ramsing, N.B. (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62,1405–1415.

    CAS  Google Scholar 

  10. Øvreås, L., Forney, L., Daae, F.L., and Torsvik. V. (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373.

    Google Scholar 

  11. Stahl, D.A., and Amann, R. (1991) Development and application of nucleic acid probes. In: Nucleic acid techniques in bacterial systematics (Stackebrandt, E. and e.Goodfellow, M., Eds.), pp. 205–248. Wiley, West Sussex, UK.

    Google Scholar 

  12. Chandler, D.P. (1998) Redefining relativity: quantitative PCR at low template concentrations for industrial and environmental microbiology. J. Ind. Microbiol. Biotechnol. 21, 128–140.

    Article  CAS  Google Scholar 

  13. Whyte, L.G., Greer, C.W., and Inniss, W.E. (1996) Assessment of the biodegradation potential of psychrotrophic microorganisms. Can. J. Microbiol. 42, 99–106.

    Article  CAS  Google Scholar 

  14. Jussila, M.M., Zhao, J., Suominen, L., and Lindström, K. (2007) TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Environ. Pollut. 146, 510–524.

    Article  CAS  Google Scholar 

  15. Wilson, M.S., Bakermans, C., and Madsen, E.L. (1999) In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl. Environ. Microbiol. 65, 80–87.

    CAS  Google Scholar 

  16. Kasai, Y., Takahata, Y., Hoaki, T., and Watanabe, K. (2005) Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Environ. Microbiol. 7, 806–818.

    Article  CAS  Google Scholar 

  17. Dojka, M.A., Hugenholtz, P., Haack, S.K., and Pace, N.R. (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64, 3869–3877.

    CAS  Google Scholar 

  18. He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., et al. (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1, 67–77.

    Article  CAS  Google Scholar 

  19. Beller, H.R., Kane, S.R., Legler, T.C., and Alvarez, P.J.J. (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ. Sci. Technol. 36, 3977–3984.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Jørgensen, K.S., Salminen, J.M., Björklöf, K. (2010). Monitored Natural Attenuation. In: Cummings, S. (eds) Bioremediation. Methods in Molecular Biology, vol 599. Humana Press. https://doi.org/10.1007/978-1-60761-439-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-439-5_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-440-1

  • Online ISBN: 978-1-60761-439-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics