Skip to main content

In Vivo Modulation of Gene Expression by Lentiviral Transduction in “Human Immune System” Rag2−/−γc −/− Mice

  • Protocol
  • First Online:
Dendritic Cell Protocols

Abstract

Over the last two decades, several humanized mouse models have been used to experimentally analyze the function and development of the human immune system. Recent advances have lead to the establishment of new murine−human chimeric models with improved characteristics, both in terms of human engraftment efficiency and in situ multilineage human hematopoietic development. We describe here the use of newborn BALB/c Rag2−/−γc −/− mice as recipients of human hematopoietic progenitor cells to produce “human immune system” (HIS) (BALB-Rag/γ) mice, using human fetal liver progenitors. The two major subsets of the human dendritic cell lineage, namely, BDCA2+CD11c plasmacytoid dendritic cells and BDCA2CD11c+ conventional dendritic cells, can be found in HIS (BALB-Rag/γ) mice. In order to manipulate the expression of genes of interest, the human hematopoietic progenitor cells can be genetically engineered ex vivo by lentiviral transduction before performing xenograft transplantation. Using this mouse model, the human immune system can be assessed for both fundamental and pre-clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greiner, D. L., Hesselton, R. A., and Shultz, L. D. (1998) SCID mouse models of human stem cell engraftment. Stem Cells 16, 166–77.

    Article  CAS  PubMed  Google Scholar 

  2. Macchiarini, F., Manz, M. G., Palucka, A. K., and Shultz, L. D. (2005) Humanized mice: are we there yet? J Exp Med 202, 1307–11.

    Article  CAS  PubMed  Google Scholar 

  3. Legrand, N., Weijer, K., and Spits, H. (2006) Experimental models to study development and function of the human immune system in vivo. J Immunol 176, 2053–58.

    CAS  PubMed  Google Scholar 

  4. Manz, M. G. (2007) Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26, 537–41.

    Article  CAS  PubMed  Google Scholar 

  5. Shultz, L. D., Ishikawa, F., and Greiner, D. L. (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7, 118–30.

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein, H. (2008) Summary of presentations at the NIH/NIAID New Humanized Rodent Models 2007 Workshop. AIDS Res Ther 5, 3.

    Article  PubMed  Google Scholar 

  7. McCune, J. M. (1997) Animal models of HIV-1 disease. Science 278, 2141–42.

    Article  CAS  PubMed  Google Scholar 

  8. McCune, J. M., Namikawa, R., Kaneshima, H., Shultz, L. D., Lieberman, M., and Weissman, I. L. (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241, 1632–39.

    Article  CAS  PubMed  Google Scholar 

  9. Krowka, J. F., Sarin, S., Namikawa, R., McCune, J. M., and Kaneshima, H. (1991) Human T cells in the SCID-hu mouse are phenotypically normal and functionally competent. J Immunol 146, 3751–56.

    CAS  PubMed  Google Scholar 

  10. Hesselton, R. M., Greiner, D. L., Mordes, J. P., Rajan, T. V., Sullivan, J. L., and Shultz, L. D. (1995) High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 172, 974–82.

    CAS  PubMed  Google Scholar 

  11. Larochelle, A., Vormoor, J., Hanenberg, H., Wang, J. C., Bhatia, M., Lapidot, T., Moritz, T., Murdoch, B., Xiao, X. L., Kato, I., Williams, D. A., and Dick, J. E. (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 2, 1329–37.

    Article  CAS  PubMed  Google Scholar 

  12. Kollet, O., Peled, A., Byk, T., Ben-Hur, H., Greiner, D., Shultz, L., and Lapidot, T. (2000) beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 95, 3102–05.

    CAS  PubMed  Google Scholar 

  13. Kerre, T. C., De Smet, G., De Smedt, M., Zippelius, A., Pittet, M. J., Langerak, A. W., De Bosscher, J., Offner, F., Vandekerckhove, B., and Plum, J. (2002) Adapted NOD/SCID model supports development of phenotypically and functionally mature T cells from human umbilical cord blood CD34(+) cells. Blood 99, 1620–26.

    Article  CAS  PubMed  Google Scholar 

  14. Hiramatsu, H., Nishikomori, R., Heike, T., Ito, M., Kobayashi, K., Katamura, K., and Nakahata, T. (2003) Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gamma cnull mice model. Blood 102, 873–80.

    Article  CAS  PubMed  Google Scholar 

  15. Melkus, M. W., Estes, J. D., Padgett-Thomas, A., Gatlin, J., Denton, P. W., Othieno, F. A., Wege, A. K., Haase, A. T., and Garcia, J. V. (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12, 1316–22.

    Article  CAS  PubMed  Google Scholar 

  16. Ishikawa, F., Livingston, A. G., Minamiguchi, H., Wingard, J. R., and Ogawa, M. (2003) Human cord blood long-term engrafting cells are CD34+ CD38. Leukemia 17, 960–64.

    Article  CAS  PubMed  Google Scholar 

  17. Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., and Manz, M. G. (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–07.

    Article  CAS  PubMed  Google Scholar 

  18. Gimeno, R., Weijer, K., Voordouw, A., Uittenbogaart, C. H., Legrand, N., Alves, N. L., Wijnands, E., Blom, B., and Spits, H. (2004) Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice: functional inactivation of p53 in developing T cells. Blood 104, 3886–93.

    Article  CAS  PubMed  Google Scholar 

  19. Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., Watanabe, T., Akashi, K., Shultz, L. D., and Harada, M. (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chainnull mice. Blood 106, 1565–73.

    Article  CAS  PubMed  Google Scholar 

  20. Chicha, L., Tussiwand, R., Traggiai, E., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., and Manz, M. G. (2005) Human Adaptive Immune System Rag2-/-{gamma}c-/- Mice. Ann N Y Acad Sci 1044, 236–43.

    Article  CAS  PubMed  Google Scholar 

  21. Schotte, R., Nagasawa, M., Weijer, K., Spits, H., and Blom, B. (2004) The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J Exp Med 200, 1503–09.

    Article  CAS  PubMed  Google Scholar 

  22. Scheeren, F. A., Nagasawa, M., Weijer, K., Cupedo, T., Kirberg, J., Legrand, N., and Spits, H. (2008) T cell-independent development and induction of somatic hypermutation in human IgM+IgD+CD27+ B cells. J Exp Med 205, 2033–42.

    Article  CAS  PubMed  Google Scholar 

  23. Ter Brake, O., Legrand, N., von Eije, K. J., Centlivre, M., Spits, H., Weijer, K., Blom, B., and Berkhout, B. (2009) Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2(-/-)(c)(-/-)) mouse model. Gene Ther 16, 148–53.

    Article  PubMed  Google Scholar 

  24. Legrand, N., Cupedo, T., van Lent, A. U., Ebeli, M. J., Weijer, K., Hanke, T., and Spits, H. (2006) Transient accumulation of human mature thymocytes and regulatory T cells with CD28 superagonist in “human immune system” Rag2-/-{gamma}c-/- mice. Blood 108, 238–45.

    Article  CAS  PubMed  Google Scholar 

  25. An, D. S., Poon, B., Ho Tsong Fang, R., Weijer, K., Blom, B., Spits, H., Chen, I. S., and Uittenbogaart, C. H. (2007) Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 14, 391–96.

    Article  CAS  PubMed  Google Scholar 

  26. Baenziger, S., Tussiwand, R., Schlaepfer, E., Mazzucchelli, L., Heikenwalder, M., Kurrer, M. O., Behnke, S., Frey, J., Oxenius, A., Joller, H., Aguzzi, A., Manz, M. G., and Speck, R. F. (2006) Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. Proc Natl Acad Sci USA 103, 15951–56.

    Article  CAS  PubMed  Google Scholar 

  27. Berges, B. K., Wheat, W. H., Palmer, B. E., Connick, E., and Akkina, R. (2006) HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-gamma c-/- (RAG-hu) mouse model. Retrovirology 3, 76.

    Article  PubMed  Google Scholar 

  28. Gorantla, S., Sneller, H., Walters, L., Sharp, J. G., Pirruccello, S. J., West, J. T., Wood, C., Dewhurst, S., Gendelman, H. E., and Poluektova, L. (2007) Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol 81, 2700–12.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, L., Kovalev, G. I., and Su, L. (2007) HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood 109, 2978–81.

    CAS  PubMed  Google Scholar 

  30. Watanabe, S., Ohta, S., Yajima, M., Terashima, K., Ito, M., Mugishima, H., Fujiwara, S., Shimizu, K., Honda, M., Shimizu, N., and Yamamoto, N. (2007) Humanized NOD/SCID/IL2Rgamma(null) mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol 81, 13259–64.

    Article  CAS  PubMed  Google Scholar 

  31. Watanabe, S., Terashima, K., Ohta, S., Horibata, S., Yajima, M., Shiozawa, Y., Dewan, M. Z., Yu, Z., Ito, M., Morio, T., Shimizu, N., Honda, M., and Yamamoto, N. (2007) Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109, 212–18.

    Article  CAS  PubMed  Google Scholar 

  32. Sun, Z., Denton, P. W., Estes, J. D., Othieno, F. A., Wei, B. L., Wege, A. K., Melkus, M. W., Padgett-Thomas, A., Zupancic, M., Haase, A. T., and Garcia, J. V. (2007) Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 204, 705–14.

    Article  CAS  PubMed  Google Scholar 

  33. Denton, P. W., Estes, J. D., Sun, Z., Othieno, F. A., Wei, B. L., Wege, A. K., Powell, D. A., Payne, D., Haase, A. T., and Garcia, J. V. (2008) Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 5, e16.

    Article  PubMed  Google Scholar 

  34. Berges, B. K., Akkina, S. R., Folkvord, J. M., Connick, E., and Akkina, R. (2008) Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2-/- gammac -/- (RAG-hu) mice. Virology 373, 342–51.

    Article  CAS  PubMed  Google Scholar 

  35. Anderson, J., Li, M. J., Palmer, B., Remling, L., Li, S., Yam, P., Yee, J. K., Rossi, J., Zaia, J., and Akkina, R. (2007) Safety and efficacy of a lentiviral vector containing three anti-HIV genes – CCR5 ribozyme, tat-rev siRNA, and TAR decoy – in SCID-hu mouse-derived T cells. Mol Ther 15, 1182–8.

    Article  CAS  PubMed  Google Scholar 

  36. Kumar, P., Ban, H. S., Kim, S. S., Wu, H., Pearson, T., Greiner, D. L., Laouar, A., Yao, J., Haridas, V., Habiro, K., Yang, Y. G., Jeong, J. H., Lee, K. Y., Kim, Y. H., Kim, S. W., Peipp, M., Fey, G. H., Manjunath, N., Shultz, L. D., Lee, S. K., and Shankar, P. (2008) T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice. Cell 134, 577–86.

    Google Scholar 

  37. Kuruvilla, J. G., Troyer, R. M., Devi, S., and Akkina, R. (2007) Dengue virus infection and immune response in humanized RAG2(-/-)gamma(c)(-/-) (RAG-hu) mice. Virology 369, 143–52.

    Article  CAS  PubMed  Google Scholar 

  38. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., and Naldini, L. (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72, 8463–71.

    CAS  PubMed  Google Scholar 

  39. Pearson, T., Greiner, D. L., and Shultz, L. D. (2008) Creation of “humanized” mice to study human immunity. Curr Protoc Immunol Chapter 15, Unit 15 21.

    Google Scholar 

  40. Swainson, L., Mongellaz, C., Adjali, O., Vicente, R., and Taylor, N. (2008) Lentiviral transduction of immune cells. Methods Mol Biol 415, 301–20.

    Article  CAS  PubMed  Google Scholar 

  41. Sinn, P. L., Sauter, S. L., and McCray, P. B., Jr. (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors–design, biosafety, and production. Gene Ther 12, 1089–98.

    Article  CAS  PubMed  Google Scholar 

  42. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15, 871–75.

    Article  CAS  PubMed  Google Scholar 

  43. Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaioannou, V. E. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–77.

    Article  CAS  PubMed  Google Scholar 

  44. Shinkai, Y., Rathbun, G., Lam, K. P., Oltz, E. M., Stewart, V., Mendelsohn, M., Charron, J., Datta, M., Young, F., Stall, A. M., and et al. (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–67.

    Article  CAS  PubMed  Google Scholar 

  45. Cao, X., Shores, E. W., Hu-Li, J., Anver, M. R., Kelsall, B. L., Russell, S. M., Drago, J., Noguchi, M., Grinberg, A., Bloom, E. T., Paul, W. E., Katz, S. I., Love, P. E., and Leonard, W. J. (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2, 223–38.

    Article  CAS  PubMed  Google Scholar 

  46. DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A., and Rajewsky, K. (1995) Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA 92, 377–81.

    Article  CAS  PubMed  Google Scholar 

  47. Ohbo, K., Suda, T., Hashiyama, M., Mantani, A., Ikebe, M., Miyakawa, K., Moriyama, M., Nakamura, M., Katsuki, M., Takahashi, K., Yamamura, K., and Sugamura, K. (1996) Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87, 956–67.

    CAS  PubMed  Google Scholar 

  48. Blom, B., Spits, H., and Krimpenfort, P. (1996) in “Cytokines and Growth Factors in Blood Transfusion”, 32, pp. 3–11, Kluwer Academic Publishers.

    Google Scholar 

  49. Legrand, N., Weijer, K., and Spits, H. (2008) Experimental model for the study of the human immune system: production and monitoring of “human immune system” Rag2-/-gamma c-/- mice. Methods Mol Biol 415, 65–82.

    Article  CAS  PubMed  Google Scholar 

  50. Huntington N. D., Legrand N., Alves N. L., Jaron B., Weijer K., Plet A., Corcuff E., Mortier E., Jacques Y., Spits H. and Di Santo J. P. (2009) IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 206, 25–34.

    Google Scholar 

Download references

Acknowledgments

We thank the staff of the ABSL-3 unit of the Animal Research Institute Amsterdam (ARIA) located at the Academic Medical Center (AMC) of Amsterdam for excellent care to the animals. We also thank Berend Hooibrink for expertise in cell sorting and maintenance of the flow cytometry facility. Last, we are grateful to the Bloemenhove Clinic (Heemstede, The Netherlands) and the Department of Obstetrics and Gynecology of the AMC for providing fetal tissues and umbilical cord blood, respectively. Mireille Centlivre is supported by a Marie-Curie Intra-European fellowship (MEIF-C-2007-039689). This work is supported by the Grand Challenges in Global Health Initiative (Bill & Melinda Gates Foundation, Wellcome Trust, Foundation for the National Institute of Health, Canadian Institutes of Health Research) as part of the “Human Vaccine Consortium”, the Dutch society for scientific research (NWO), the Dutch Foundation for Cancer Research (KWF), and the Landsteiner Blood Transfusion Research Foundation (LSBR).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

van Lent, A.U. et al. (2010). In Vivo Modulation of Gene Expression by Lentiviral Transduction in “Human Immune System” Rag2−/−γc −/− Mice. In: Naik, S. (eds) Dendritic Cell Protocols. Methods in Molecular Biology, vol 595. Humana Press. https://doi.org/10.1007/978-1-60761-421-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-421-0_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-420-3

  • Online ISBN: 978-1-60761-421-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics