Skip to main content

Overcoming Multidrug Resistance by RNA Interference

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

The ATP-binding cassette (ABC)-transporter P-glycoprotein (Pgp, also known as ABCB1) is the best characterized factor involved in multidrug resistance (MDR) of cancer cells. Pgp, which is encoded by the MDR1 gene, acts as a membrane-embedded drug extrusion pump for multiple structurally unrelated cytotoxic drugs. Inhibition of the pump activity of Pgp by low-molecular weight pharmacologically active compounds as a method to reverse MDR in cancer patients has been studied extensively, but so far clinical trials have generally been disappointing. Thus, experimental strategies for overcoming MDR are under investigation. These approaches include the application of the RNA interference (RNAi) technology. RNAi is a physiological mechanism triggered by small double-stranded RNA molecules resulting in a sequence-specific gene-silencing. Besides its potential for development of novel therapeutics, RNAi also offers the possibility for specific inhibition of cellular targets in functional investigations. For specific inhibition of Pgp by triggering the RNAi pathway, transient gene-silencing by application of small interfering RNA (siRNA), and stable inhibition by transfection of MDR cancer cells with short hairpin RNA (shRNA) encoding expression cassettes encoded on plasmid DNA are described. Efficacy of RNAi on MDR1 mRNA expression level is determined by quantitative real-time RT-PCR and Northern blot. The consequences of RNAi on protein expression level are measured by Western blot and immunohistochemistry. The effects on the drug extrusion activity are measured by a drug accumulation assay based on flow cytometry, and reversal of the drug-resistant phenotype by assessment of drug-specific IC50-values by a cell proliferation assay based on colorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  2. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  3. Lage H (2005) Potential applications of RNA interference technology in the treatment of cancer. Fut Oncol 1:103–113

    Article  CAS  Google Scholar 

  4. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  5. Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329

    Article  CAS  PubMed  Google Scholar 

  6. Martin SE, Caplen NJ (2007) Application of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet 8:81–108

    Article  CAS  PubMed  Google Scholar 

  7. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  PubMed  Google Scholar 

  8. Lage H (2006) MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr Drug Targets 7:813–821

    Article  CAS  PubMed  Google Scholar 

  9. Nieth C, Priebsch A, Stege A, Lage H (2003) Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett 545:144–150

    Article  CAS  PubMed  Google Scholar 

  10. Wu H, Hait WN, Yang JM (2003) Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 63:1515–1519

    CAS  PubMed  Google Scholar 

  11. Zhou DC, Marie JP, Suberville AM, Zittoun R (1992) Relevance of mdr1 gene expression in acute myeloid leukemia and comparison of different diagnostic methods. Leukemia 6:879–885

    CAS  PubMed  Google Scholar 

  12. Dieckmann-Schuppert A, Schnittler H (1996) A simple assay for quantification of protein in tissue sections, cell cultures, and cell homogenates, and of protein immobilized on solid surfaces. Cell Tissue Res 288:119–126

    Article  Google Scholar 

  13. Skehan P, Storeng R, Scudiero D et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  14. Liscovitch M, Ravid D (2007) A case study in misidentification of cancer cell lines: MCF-7/AdrR cells (re-designated NCI/ADR-RES) are derived from OVCAR-8 human ovarian carcinoma cells. Cancer Lett 245:350–352

    Article  CAS  PubMed  Google Scholar 

  15. Lage H (2003) Molecular analysis of therapy resistance in gastric cancer. Dig Dis 21:326–338

    Article  PubMed  Google Scholar 

  16. Alemán C, Annereau JP, Linag XJ et al (2003) P-glycoprotein, expressed in multidrug resistant cells, is not responsible for alterations in membrane fluidity or membrane potential. Cancer Res 63:3084–3091

    PubMed  Google Scholar 

  17. Stege A, Priebsch A, Nieth C, Lage H (2004) Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther 11:699–706

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Own experiments for overcoming cancer MDR by RNAi were supported by grants LA 1039/2-1, LA 1039/2-3 and LA 1039/5-1 of the “Deutsche Forschungsgemeinschaft” (DFG), and by the “RNA-network” funded by the “Bundesministerium für Bildung und Forschung” (BMBF) and Berlin as well as by grant no. 01GU0615 of the BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Lage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stege, A., Krühn, A., Lage, H. (2010). Overcoming Multidrug Resistance by RNA Interference. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics