Skip to main content

Immunosuppressors as Multidrug Resistance Reversal Agents

  • Protocol
  • First Online:
Multi-Drug Resistance in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

Multidrug-resistance (MDR) is the major reason for failure of cancer therapy. ATP-binding cassette (ABC) transporters contribute to drug resistance via ATP-dependent drug efflux. P-glycoprotein (Pgp), which is encoded by MDR1 gene, confers resistance to certain anticancer agents. The development of agents able to modulate MDR mediated by Pgp and other ABC transporters remained a major goal for the past 20 years. The calcium blocker verapamil was the first drug shown to be a modulator of Pgp, and since many different chemical compounds have been shown to exert the same effect in vitro by blocking Pgp activity. These included particularly immunosuppressors. Cyclosporin A (CSA) was the first immunosuppressor that have been shown to modulate Pgp activity in laboratory models and entered very early into clinical trials for reversal of MDR. The proof of reversing activity of CSA was found in phase II studies with myeloma and acute leukemia. In phase III studies, the results were less convincing regarding the response rate, progression-free survival, and overall survival, which were detected in advanced refractory myeloma. The non-immunosuppressive derivative PSC833 (valspodar) was subsequently developed. This compound showed tenfold higher potency in reversal of MDR mediated by Pgp. However, pharmacokinetic interactions required reductions in the dose of the concurrently administered anticancer agents. The pharmacokinetic interactions were likely because of decreased clearance of the anticancer agents, possibly as a result of Pgp inhibition in organs such as the gastrointestinal tract and kidney, as well as inhibition of cytochrome P450. Finally, CSA and PSC833 have been shown also to modulate the ceramide metabolism which stands as second messenger of anticancer agent-induced apoptosis. In fact, CSA and PSC833 are also able to respectively inhibit ceramide glycosylation and stimulate de novo ceramide synthesis. This could enhance the cellular level of ceramide and potentiate apoptosis induced by some anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottesman MM (1993) How cancer cells evade chemotherapy. Cancer Res 53:747–754

    CAS  PubMed  Google Scholar 

  2. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41: 1967–1972

    CAS  PubMed  Google Scholar 

  3. Cano-Gauci DF, Riordan JR (1987) Action of calcium antagonists on multidrug resistant cells. Specific cytotoxicity independent of increased cancer drug accumulation. Biochem Pharmacol 36:2115–2123

    Article  CAS  PubMed  Google Scholar 

  4. Silbermann MH, Boersma AW, Janssen AL et al (1989) Effects of cyclosporin A and verapamil on the intracellular daunorubicin accumulation in Chinese hamster ovary cells with increasing levels of drug-resistance. Int J Cancer 44:722–726

    Article  CAS  PubMed  Google Scholar 

  5. Hait WN, Stein JM, Koletsky AJ, Harding MW, Handschumacher RE (1989) Activity of cyclosporin A and a non-immunosuppressive cyclosporin against multidrug resistant leukemic cell lines. Cancer Commun 1:35–43

    CAS  PubMed  Google Scholar 

  6. Twentyman PR, Bleehen NM (1991) Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin. Eur J Cancer 27:1639–1642

    Article  CAS  PubMed  Google Scholar 

  7. Boesch D, Gaveriaux C, Jachez B, Pourtier-Manzanedo A, Bollinger P, Loor F et al (1991) In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 51:4226–4233

    CAS  PubMed  Google Scholar 

  8. Beck WT, Cirtain MC, Glover CJ, Felsted RL, Safa AR (1988) Effects of indole alkaloids on multidrug resistance and labeling of P-glycoprotein by a photoaffinity analog of vinblastine. Biochem Biophys Res Commun 153:959–966

    Article  CAS  PubMed  Google Scholar 

  9. Sonneveld P, Durie BG, Lokhorst HM et al (1992) Modulation of multidrug-resistant multiple myeloma by cyclosporin. The Leukaemia Group of the EORTC and the HOVON. Lancet 340:255–259

    Article  CAS  PubMed  Google Scholar 

  10. List AF, Spier C, Greer J et al (1993) Phase I/II trial of cyclosporine as a chemotherapy-resistance modifier in acute leukemia. J Clin Oncol 11:1652–1660

    CAS  PubMed  Google Scholar 

  11. Sonneveld P, Suciu S, Weijermans P et al (2001) Cyclosporin A combined with vincristine, doxorubicin and dexamethasone (VAD)compared with VAD alone in patients with advanced refractory multiple myeloma: an EORTC-HOVON randomized phase III study (06914). Br J Haematol 115:895–902

    Article  CAS  PubMed  Google Scholar 

  12. List AF, Kopecky KJ, Willman CL et al (2001) Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 98:3212–3220

    Article  CAS  PubMed  Google Scholar 

  13. Boote DJ, Dennis IF, Twentyman PR et al (1996) Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol 14:610–618

    CAS  PubMed  Google Scholar 

  14. Giaccone G, Linn SC, Welink J et al (1997) A dose-finding and pharmacokinetic study of reversal of multidrug resistance with SDZ PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res 3:2005–2015

    CAS  PubMed  Google Scholar 

  15. Advani R, Saba HI, Tallman MS et al (1999) Treatment of refractory and relapsed acute myelogenous leukemia with combination chemotherapy plus the multidrug resistance modulator PSC 833 (Valspodar). Blood 93:787–795

    CAS  PubMed  Google Scholar 

  16. Fracasso PM, Westervelt P, Fears CL et al (2000) Phase I study of paclitaxel in combination with a multidrug resistance modulator, PSC 833 (Valspodar), in refractory malignancies. J Clin Oncol 18:1124–34

    CAS  PubMed  Google Scholar 

  17. Baer MR, George SL, Dodge RK et al (2002) Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 100:1224–1232

    CAS  PubMed  Google Scholar 

  18. Bates SE, Bakke S, Kang M et al (2004) A phase I/II study of infusional vinblastine with the P-glycoprotein antagonist valspodar (PSC 833) in renal cell carcinoma. Clin Cancer Res 10:4724–4733

    Article  CAS  PubMed  Google Scholar 

  19. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10:159–165

    PubMed  Google Scholar 

  20. Burchenal JH, Robinson E, Johnston SF, Kushida MN (1950) The induction of resistance to 4-amino-N10-methyl-pteroylglutaminic acid in a strain of transmitted mouse leukemia. Science 111:116–117

    Article  CAS  PubMed  Google Scholar 

  21. Dano K (1973) Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 323:466–483

    Article  CAS  PubMed  Google Scholar 

  22. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  23. Ueda K, Clark DP, Chen CJ et al (1987) The human multidrug resistance (mdr1) gene. cDNA cloning and transcription initiation. J Biol Chem 262:505–508

    CAS  PubMed  Google Scholar 

  24. Riordan JR, Ling V (1979) Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J Biol Chem 254:12701–1275

    CAS  PubMed  Google Scholar 

  25. Riou JF, Naudin A, Lavelle F (1992) Effects of Taxotere on murine and human tumor cell lines. Biochem Biophys Res Commun 187:164–170

    Article  CAS  PubMed  Google Scholar 

  26. Greenberger LM, Lothstein L, Williams SS, Horwitz SB (1988) Distinct P-glycoprotein precursors are overproduced in independently isolated drug-resistant cell lines. Proc Natl Acad Sci USA 85:3762–3766

    Article  CAS  PubMed  Google Scholar 

  27. Leier I, Jedlitschky G, Buchholz U et al (1994) The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 269:27807–27810

    CAS  PubMed  Google Scholar 

  28. Honjo Y, Hrycyna CA, Yan QW et al (2001) Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 61:6635–6639

    CAS  PubMed  Google Scholar 

  29. Wattel E, Solary E, Hecquet B et al (1999) Quinine improves results of intensive chemotherapy (IC) in myelodysplastic syndromes (MDS) expressing P-glycoprotein (PGP). Updated results of a randomized study. Groupe Français des Myélodysplasies (GFM) and Groupe GOELAMS. Adv Exp Med Biol 457:35–46

    CAS  PubMed  Google Scholar 

  30. Daenen S, van der Holt B, Verhoef GE et al (2004) Addition of cyclosporin A to the combination of mitoxantrone and etoposide to overcome resistance to chemotherapy in refractory or relapsing acute myeloid leukaemia: a randomised phase II trial from HOVON, the Dutch-Belgian Haemato-Oncology Working Group for adults. Leuk Res 28:1057–1067

    Article  CAS  PubMed  Google Scholar 

  31. Höllt V, Kouba M, Dietel M, Vogt G (1992) Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochem Pharmacol 43:2601–2608

    Article  PubMed  Google Scholar 

  32. Robert J, Jarry C (2003) Multidrug resistance reversal agents. J Med Chem 46:4805–4817

    Article  CAS  PubMed  Google Scholar 

  33. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  PubMed  Google Scholar 

  34. Seelig A, Gatlik-Landwojtowicz E (2005) Inhibitors of multidrug efflux transporters: their membrane and protein interactions. Mini Rev Med Chem 5:135–151

    CAS  PubMed  Google Scholar 

  35. Twentyman PR (1992) Cyclosporins as drug resistance modifiers. Biochem Pharmacol 43:109–117

    Article  CAS  PubMed  Google Scholar 

  36. Tanigawara Y, Okamura N, Hirai M et al (1992) Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line LLC-PK1. J Pharmacol Exp Ther 263:840–845

    CAS  PubMed  Google Scholar 

  37. Wattel E, Solary E, Hecquet B et al (1998) Quinine improves the results of intensive chemotherapy in myelodysplastic syndromes expressing P glycoprotein: results of a randomized study. Br J Haematol 102:1015–1024

    Article  CAS  PubMed  Google Scholar 

  38. Hofmann J, Wolf A, Spitaler M et al (1992) Reversal of multidrug resistance by B859–35, a metabolite of B859–35, niguldipine, verapamil and nitrendipine. J Cancer Res Clin Oncol 118:361–366

    Article  CAS  PubMed  Google Scholar 

  39. Minderman H, O’Loughlin KL, Pendyala L, Baer MR (2004) VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 10:1826–1834

    Article  CAS  PubMed  Google Scholar 

  40. Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T (1993) In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 53:4595–4602

    CAS  PubMed  Google Scholar 

  41. Zhou DC, Simonin G, Faussat AM, Zittoun R, Marie JP (1997) Effect of the multidrug inhibitor GG918 on drug sensitivity of human leukemic cells. Leukemia 11:1516–1522

    Article  CAS  PubMed  Google Scholar 

  42. Dantzig AH, Shepard RL, Pratt SE III et al (2004) Evaluation of the binding of the tricyclic isoxazole photoaffinity label LY475776 to multidrug resistance associated protein 1 (MRP1) orthologs and several ATP-binding cassette (ABC) drug transporters. Biochem Pharmacol 67:1111–1121

    Article  CAS  PubMed  Google Scholar 

  43. Shepard RL, Cao J, Starling JJ, Dantzig AH (2003) Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int J Cancer 103:121–125

    Article  CAS  PubMed  Google Scholar 

  44. Tang R, Faussat AM, Perrot JY et al (2008) Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML). BMC Cancer 8:51

    Article  PubMed  Google Scholar 

  45. Martin C, Berridge G, Mistry P et al (1999) The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol 128:403–411

    Article  CAS  PubMed  Google Scholar 

  46. Walker J, Martin C, Callaghan R (2004) Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacy. Eur J Cancer 40:594–605

    Article  CAS  PubMed  Google Scholar 

  47. Evers R, Kool M, Smith AJ et al (2000) Inhibitory effect of the reversal agents V-104, GF120918 and pluronic L61 on MDR1 Pgp-, MRP1- and MRP2-mediated transport. Br J Cancer 83:366–374

    Article  CAS  PubMed  Google Scholar 

  48. van Zuylen L, Sparreboom A, van der Gaast A et al (2000) The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin Cancer Res 6:1365–1371

    PubMed  Google Scholar 

  49. van Zuylen L, Sparreboom A, van der Gaast A et al (2002) Disposition of docetaxel in the presence of P-glycoprotein inhibition by intravenous administration of R101933. Eur J Cancer 38:1090–1099

    Article  PubMed  Google Scholar 

  50. Pierré A, Dunn TA, Kraus-Berthier L et al (1992) In vitro and in vivo circumvention of multidrug resistance by Servier 9788, a novel triazinoaminopiperidine derivative. Invest New Drugs 10:137–148

    Article  PubMed  Google Scholar 

  51. Punt CJ, Voest EE, Tueni E et al (1997) Phase IB study of doxorubicin in combination with the multidrug resistance reversing agent S9788 in advanced colorectal and renal cell cancer. Br J Cancer 76:1376–1381

    CAS  PubMed  Google Scholar 

  52. Vastag B (2000) Almost serendipity: alcoholism drug reverses drug resistance in vitro. J Natl Cancer Inst 92:864–865

    Article  CAS  PubMed  Google Scholar 

  53. Venne A, Li S, Mandeville R, Kabanov A, Alakhov V (1996) Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res 56:3626–3629

    CAS  PubMed  Google Scholar 

  54. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T (1993) Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 268:6077–6080

    CAS  PubMed  Google Scholar 

  55. Shirai A, Naito M, Tatsuta T et al (1994) Transport of cyclosporin A across the brain capillary endothelial cell monolayer by P-glycoprotein. Biochim Biophys Acta 1222:400–404

    Article  CAS  PubMed  Google Scholar 

  56. Schramm U, Fricker G, Wenger R, Miller DS (1995) P-glycoprotein-mediated secretion of a fluorescent cyclosporin analogue by teleost renal proximal tubules. Am J Physiol 268:F46–F52

    CAS  PubMed  Google Scholar 

  57. Stein WD (1997) Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol Rev 77:545–590

    CAS  PubMed  Google Scholar 

  58. Litman T, Zeuthen T, Skovsgaard T, Stein WD (1997) Structure-activity relationships of P-glycoprotein interacting drugs: kinetic characterization of their effects on ATPase activity. Biochim Biophys Acta 1361:159–168

    CAS  PubMed  Google Scholar 

  59. Merlin JL, Guerci A, Marchal S et al (1994) Comparative evaluation of S9788, verapamil, and cyclosporine A in K562 human leukemia cell lines and in P-glycoprotein-expressing samples from patients with hematologic malignancies. Blood 84:262–269

    CAS  PubMed  Google Scholar 

  60. Merlin JL, Guerci AP, Marchal S et al (1998) Influence of SDZ-PSC833 on daunorubicin intracellular accumulation in bone marrow specimens from patients with acute myeloid leukaemia. Br J Haematol 103:480–487

    Article  CAS  PubMed  Google Scholar 

  61. Legrand O, Simonin G, Perrot JY, Zittoun R, Marie JP (1998) Pgp and MRP activities using calcein-AM are prognostic factors in adult acute myeloid leukemia patients. Blood 91:4480–4488

    CAS  PubMed  Google Scholar 

  62. Legrand O, Simonin G, Beauchamp-Nicoud A, Zittoun R, Marie JP (1999) Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia. Blood 94:1046–1056

    CAS  PubMed  Google Scholar 

  63. Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8:411–424

    Article  CAS  PubMed  Google Scholar 

  64. Bates SE (2002) Solving the problems of multidrug-resistance: ABC transporters in clinical oncology. In: Holland IB, Cole SP, Kuchler K et al (eds) ABC proteins: from bacteria to man. Elsevier Science, London, pp 359–391

    Google Scholar 

  65. Beketic-Oreskovic L, Duran GE et al (1995) Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr1 gene activation by the cyclosporin PSC 833. J Natl Cancer Inst 87:1593–1602

    Article  CAS  PubMed  Google Scholar 

  66. Cocker HA, Tiffin N, Pritchard-Jones K, Pinkerton CR, Kelland LR (2001) In vitro prevention of the emergence of multidrug resistance in a pediatric rhabdomyosarcoma cell line. Clin Cancer Res 7:3193–3198

    CAS  PubMed  Google Scholar 

  67. Levade T, Jaffrezou JP (1999) Signalling sphingomyelinases: which, where, how and why ? Biochim Biophys Acta 1438:1–17

    CAS  PubMed  Google Scholar 

  68. Sietsma H, Veldman RJ, Kok JW (2001) The involvement of sphingolipids in multidrug resistance. J Membr Biol 181:153–162

    CAS  PubMed  Google Scholar 

  69. Perry DK (2000) The role of de novo ceramide synthesis in chemotherapy-induced apoptosis. Ann N Y Acad Sci 905:91–96

    Article  CAS  PubMed  Google Scholar 

  70. Mandon EC, Ehses I, Rother J, van Echten G, Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem 267:11144–11148

    CAS  PubMed  Google Scholar 

  71. Michel C, van Echten-Deckert G (1997) Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett 416:153–155

    Article  CAS  PubMed  Google Scholar 

  72. Hannun YA, Luberto C, Argraves KM (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40:4893–4903

    Article  CAS  PubMed  Google Scholar 

  73. Michel C, van Echten-Deckert G, Rother J et al (1997) Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4, 5-trans-double bond of sphingosine at the level of dihydroceramide. J Biol Chem 272:22432–22437

    Article  CAS  PubMed  Google Scholar 

  74. Bose R, Verheij M, Haimovitz-Friedman A et al (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405–414

    Article  CAS  PubMed  Google Scholar 

  75. Turnbull KJ, Brown BL, Dobson PR (1999) Caspase-3-like activity is necessary but not sufficient for daunorubicin-induced apoptosis in Jurkat human lymphoblastic leukemia cells. Leukemia 13:1056–1061

    Article  CAS  PubMed  Google Scholar 

  76. Zhang J, Alter N, Reed JC et al (1996) Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA 93:5325–5328

    Article  CAS  PubMed  Google Scholar 

  77. Olshefski RS, Ladisch S (2001) Glucosylceramide synthase inhibition enhances vincristine-induced cytotoxicity. Int J Cancer 93:131–138

    Article  CAS  PubMed  Google Scholar 

  78. Cabot MC, Giuliano AE, Han TY, Liu YY (1999) SDZ PSC 833, the cyclosporine A analogue and multidrug resistance modulator, activates ceramide synthesis and increases vinblastine sensitivity in drug-sensitive and drug-resistant cancer cells. Cancer Res 59:880–885

    CAS  PubMed  Google Scholar 

  79. Myrick D, Blackinton D, Klostergaard J et al (1999) Paclitaxel-induced apoptosis in Jurkat, a leukemic T cell line, is enhanced by ceramide. Leuk Res 23:569–278

    Article  CAS  PubMed  Google Scholar 

  80. Mehta S, Blackinton D, Omar I et al (2000) Combined cytotoxic action of paclitaxel and ceramide against the human Tu138 head and neck squamous carcinoma cell line. Cancer Chemother Pharmacol 46:85–92

    Article  CAS  PubMed  Google Scholar 

  81. Cabot MC, Han TY, Giuliano AE (1998) The multidrug resistance modulator SDZ PSC 833 is a potent activator of cellular ceramide formation. FEBS Lett 431:185–188

    Article  CAS  PubMed  Google Scholar 

  82. Goulding CW, Giuliano AE, Cabot MC (2000) SDZ PSC 833 the drug resistance modulator activates cellular ceramide formation by a pathway independent of P-glycoprotein. Cancer Lett 149:143–151

    Article  CAS  PubMed  Google Scholar 

  83. Senchenkov A, Litvak DA, Cabot MC (2001) Targeting ceramide metabolism – a strategy for overcoming drug resistance. J Natl Cancer Inst 93:347–357

    Article  CAS  PubMed  Google Scholar 

  84. Lucci A, Han TY, Liu YY, Giuliano AE, Cabot MC (1999) Multidrug resistance modulators and doxorubicin synergize to elevate ceramide levels and elicit apoptosis in drug-resistant cancer cells. Cancer 86:300–311

    Article  CAS  PubMed  Google Scholar 

  85. Lucci A, Han TY, Liu YY, Giuliano AE, Cabot MC (1999) Modification of ceramide metabolism increases cancer cell sensitivity to cytotoxics. Int J Oncol 15:541–546

    CAS  PubMed  Google Scholar 

  86. Wang H, Giuliano AE, Cabot MC (2002) Enhanced de novo ceramide generation through activation of serine palmitoyltransferase by the P-glycoprotein antagonist SDZ PSC 833 in breast cancer cells. Mol Cancer Ther 1:719–726

    CAS  PubMed  Google Scholar 

  87. Bezombes C, Maestre N, Laurent G et al (1998) Restoration of TNF-alpha-induced ceramide generation and apoptosis in resistant human leukemia KG1a cells by the P-glycoprotein blocker PSC833. FASEB J 12:101–109

    CAS  PubMed  Google Scholar 

  88. Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC (1996) Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem 271:19530–19536

    Article  CAS  PubMed  Google Scholar 

  89. Liu YY, Han TY, Giuliano AE, Cabot MC (1999) Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 274:1140–1146

    Article  CAS  PubMed  Google Scholar 

  90. Morjani H, Aouali N, Belhoussine R et al (2001) Elevation of glucosylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets. Int J Cancer 94:157–165

    Article  CAS  PubMed  Google Scholar 

  91. Kok JW, Veldman RJ, Klappe K et al (2000) Differential expression of sphingolipids in MRP1 overexpressing HT29 cells. Int J Cancer 87:172–178

    Article  CAS  PubMed  Google Scholar 

  92. Lucci A, Cho WI, Han TY et al (1998) Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer Res 18:475–480

    CAS  PubMed  Google Scholar 

  93. Veldman RJ, Klappe K, Hinrichs J et al (2002) Altered sphingolipid metabolism in multidrug-resistant ovarian cancer cells is due to uncoupling of glycolipid biosynthesis in the Golgi apparatus. FASEB J 16: 1111–1113

    CAS  PubMed  Google Scholar 

  94. Lavie Y, Cao H, Volner A et al (1997) Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 272:1682–1687

    Article  CAS  PubMed  Google Scholar 

  95. Lucci A, Giuliano AE, Han TY et al (1999) Ceramide toxicity and metabolism differ in wild-type and multidrug-resistant cancer cells. Int J Oncol 15:535–540

    CAS  PubMed  Google Scholar 

  96. Nicholson KM, Quinn DM, Kellett GL, Warr JR (1999) Preferential killing of multidrug-resistant KB cells by inhibitors of glucosylceramide synthase. Br J Cancer 81:423–430

    Article  CAS  PubMed  Google Scholar 

  97. Cabot MC, Giuliano AE, Volner A, Han TY (1996) Tamoxifen retards glycosphingolipid metabolism in human cancer cells. FEBS Lett 394:129–131

    Article  CAS  PubMed  Google Scholar 

  98. Pommerenke E, Mattern J, Volm M (1994) Modulation of doxorubicin-toxicity by tamoxifen in multidrug-resistant tumor cells in vitro and in vivo. J Cancer Res Clin Oncol 120:422–426

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Morjani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Morjani, H., Madoulet, C. (2010). Immunosuppressors as Multidrug Resistance Reversal Agents. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics