Skip to main content

Dissolution of Double Holliday Junctions by the Concerted Action of BLM and Topoisomerase IIIα

  • Protocol
  • First Online:
DNA Topoisomerases

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 582))

Abstract

In eukaryotic cells, topoisomerase III forms an evolutionarily conserved complex with a RecQ family helicase and two OB-fold containing proteins, replication protein A (RPA) and RMI1. One role for this complex is to catalyze the completion of homologous recombination reactions in which the recombining DNA molecules are covalently interlinked by a double Holliday junction structure. This process, which requires the single-stranded DNA decatenation activity of topoisomerase III, is termed Holliday junction “dissolution” to distinguish it from Holliday junction “resolution” catalyzed by endonucleases (resolvases) that simply cleave the four-way junction. Holliday junction dissolution gives rise exclusively to non-cross-over recombinant products, which would have the effect of suppressing sister chromatid exchanges and loss of heterozygosity between homologous chromosomes. In this chapter, we provide a detailed experimental protocol for the preparation of an oligonucleotide-based, double Holliday junction substrate and for the biochemical analysis of dissolution in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, J. C. (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3, 430–40.

    Article  PubMed  CAS  Google Scholar 

  2. Bachrati, C. Z. and Hickson, I. D. (2003) RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374, 577–606.

    Article  PubMed  CAS  Google Scholar 

  3. German, J. (1993) Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore) 72, 393–406.

    CAS  Google Scholar 

  4. Bachrati, C. Z. and Hickson, I. D. (2008) RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 117, 219–33.

    Article  PubMed  CAS  Google Scholar 

  5. Sharma, S., Doherty, K. M., and Brosh, R. M., Jr. (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398, 319–37.

    Article  PubMed  CAS  Google Scholar 

  6. Yin, J., Sobeck, A., Xu, C., Meetei, A. R., Hoatlin, M., Li, L., and Wang, W. (2005) BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity. EMBO J 24, 1465–76.

    Article  PubMed  CAS  Google Scholar 

  7. Mullen, J. R., Nallaseth, F. S., Lan, Y. Q., Slagle, C. E., and Brill, S. J. (2005) Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. Mol Cell Biol 25, 4476–87.

    Article  PubMed  CAS  Google Scholar 

  8. Chang, M., Bellaoui, M., Zhang, C., Desai, R., Morozov, P., Delgado-Cruzata, L., Rothstein, R., Freyer, G. A., Boone, C., and Brown, G. W. (2005) RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase/Topo III complex. EMBO J 24, 2024–33.

    Article  PubMed  CAS  Google Scholar 

  9. Mankouri, H. W. and Hickson, I. D. (2007) The RecQ helicase-topoisomerase III-Rmi1 complex: a DNA structure-specific ‘dissolvasome’? Trends Biochem Sci 32, 538–46.

    Article  PubMed  CAS  Google Scholar 

  10. Mankouri, H. W. and Hickson, I. D. (2006) Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage. Mol Biol Cell 17, 4473–83.

    Article  PubMed  CAS  Google Scholar 

  11. Onoda, F., Seki, M., Miyajima, A., and Enomoto, T. (2000) Elevation of sister chromatid exchange in Saccharomyces cerevisiae sgs1 disruptants and the relevance of the disruptants as a system to evaluate mutations in Bloom’s syndrome gene. Mutat Res 459, 203–9.

    Article  PubMed  CAS  Google Scholar 

  12. Chaganti, R. S. K., Schonberg, S., and German, J. (1974) A many-fold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc Natl Acad Sci USA 71, 4508–12.

    Article  PubMed  CAS  Google Scholar 

  13. Ui, A., Seki, M., Ogiwara, H., Onodera, R., Fukushige, S., Onoda, F., and Enomoto, T. (2005) The ability of Sgs1 to interact with DNA topoisomerase III is essential for damage-induced recombination. DNA Repair (Amst) 4, 191–201.

    Article  CAS  Google Scholar 

  14. Karow, J. K., Constantinou, A., Li, J. L., West, S. C., and Hickson, I. D. (2000) The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA 97, 6504–8.

    Article  PubMed  CAS  Google Scholar 

  15. Wu, L. and Hickson, I. D. (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–4.

    Article  PubMed  CAS  Google Scholar 

  16. Plank, J. L., Wu, J., and Hsieh, T. S. (2006) Topoisomerase IIIα and Bloom’s helicase can resolve a mobile double Holliday junction substrate through convergent branch migration. Proc Natl Acad Sci USA 103, 11118–23.

    Article  PubMed  CAS  Google Scholar 

  17. Wu, L., Bachrati, C. Z., Ou, J., Xu, C., Yin, J., Chang, M., Wang, W., Li, L., Brown, G. W., and Hickson, I. D. (2006) BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci USA 103, 4068–73.

    Article  PubMed  CAS  Google Scholar 

  18. Raynard, S., Bussen, W., and Sung, P. (2006) A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281, 13861–4.

    Article  PubMed  CAS  Google Scholar 

  19. Plank, J. L. and Hsieh, T. S. (2006) A novel, topologically constrained DNA molecule containing a double Holliday junction: design, synthesis, and initial biochemical characterization. J Biol Chem 281, 17510–6.

    Article  PubMed  CAS  Google Scholar 

  20. Fu, T. J., Tse-Dinh, Y. C., and Seeman, N. C. (1994) Holliday junction crossover topology. J Mol Biol 236, 91–105.

    Article  PubMed  CAS  Google Scholar 

  21. Karow, J. K., Chakraverty, R. K., and Hickson, I. D. (1997) The Bloom’s syndrome gene product is a 3′-5′ DNA helicase. J Biol Chem 272, 30611–4.

    Article  PubMed  CAS  Google Scholar 

  22. Goulaouic, H., Roulon, T., Flamand, O., Grondard, L., Lavelle, F. and Riou, J. F. (1999) Purification and characterization of human DNA topoisomerase IIIalpha. Nucleic Acids Res 27, 2443–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bachrati, C.Z., Hickson, I.D. (2009). Dissolution of Double Holliday Junctions by the Concerted Action of BLM and Topoisomerase IIIα. In: Clarke, D. (eds) DNA Topoisomerases. Methods in Molecular Biology™, vol 582. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-340-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-340-4_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-339-8

  • Online ISBN: 978-1-60761-340-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics