Skip to main content

Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

  • Protocol
  • First Online:
Biofuels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 581))

Summary

The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoon, H.H., Wu, Z.W., Lee, Y.Y. (1995) Ammonia-recycled percolation process for pretreatment of biomass feedstock. Appl. Biochem. Biotechnol. 51/52, 5–19.

    Article  CAS  Google Scholar 

  2. Iyer, P.V., Wu, Z.W., Kim, S.B., Lee, Y.Y. (1996) Ammonia recycled percolation process for pretreatment of herbaceous biomass. Appl. Biochem. Biotechnol. 57/58, 121–132.

    Article  CAS  Google Scholar 

  3. Kim, T.H., Kim, J.S., Sunwoo, C., Lee, Y.Y. (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol. 90, 39–47.

    Article  CAS  Google Scholar 

  4. Kim, T.H. and Lee, Y.Y. (2005) Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol. 124, 1119–1132.

    Article  Google Scholar 

  5. Kim, T.H. and Lee, Y.Y. (2007) Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperature. Appl. Biochem. Biotechnol. 136–140, 81–92.

    Article  Google Scholar 

  6. Chang, V.S., Holtzapple, M.T. (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84/86, 5–37.

    Article  Google Scholar 

  7. Cowling, E.B., Kirk, T.K. (1976) Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes. Biotechnol. Bioeng. Symp. 6, 95–123.

    CAS  Google Scholar 

  8. Dulap, C.E., Thomson, J., Chiang, L.C. (1976) Treatment processes to increase cellulose microbial digestibility. AIChE. Symp. Ser. 72(158), 58.

    Google Scholar 

  9. Lee, D., Yu, A.H.C., Saddler, J.N. (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol. Bioeng. 45, 328–336.

    Article  CAS  Google Scholar 

  10. Mooney, C.A., Mansfield, S.D., Touhy, M.G., Saddler, J.N. (1998) The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwood. Bioresour. Technol. 64, 113–119.

    Article  CAS  Google Scholar 

  11. Schwald, W., Brownell, H.H., Saddler, J. (1988) Enzymatic hydrolysis of steam treated aspen wood: Influence of partial hemicellulose and lignin removal prior to pretreatment. J. Wood Chem. Tech. 8 (4), 543–560.

    Article  CAS  Google Scholar 

  12. Kim, T.H. and Lee, Y.Y. (2006) Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour. Technol.y 97, 224–232.

    Article  CAS  Google Scholar 

  13. Adler, E. (1977) Lignin chemistry – past, present and future. Wood Sci. Technol. 11, 169–218.

    Article  CAS  Google Scholar 

  14. Lin, S.Y., Lebo, S.E. Jr. (1995) Lignin, Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 15, 268–289.

    Google Scholar 

  15. Northey, R.A. (1992) Low-cost uses of lignin; emerging technology if materials and chemicals from biomass. ACS Symp. Ser. 476, Washington, DC.

    Google Scholar 

  16. Sarkanen, K.V., Ludwig, C.H. (1971) Lignins: Occurrence, Formation, Structure and Reactions, Wiley, New York.

    Google Scholar 

  17. Fein, J.E., Talim, S.R., Lawford, G.R. (1984) Evaluation of D-xylose fermenting yeasts for utilization of a wood derived hemicellulose hydrolyzate. Can. J. Microbiol. 30, 682–690.

    Article  CAS  Google Scholar 

  18. Hahn-Hägerdal, B., Jeppsson, H., Olsson, L., Mohagheghi, A. (1994) An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydrolysate. Appl. Microbiol. Biotechnol. 41(1), 62–72.

    Google Scholar 

  19. Björling, T., Lindman, B., 1989. Evaluation of xylose-fermenting yeasts for ethanol production from spent sulfite liquor. Enzyme Microb. Technol. 11(4), 240–246.

    Article  Google Scholar 

  20. Sanchez, B., Bautista, J. (1988) Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii . Enzyme Microb. Technol. 10(1), 315–318.

    Article  CAS  Google Scholar 

  21. Tran, A.V., Chambers, R.P. (1986) Ethanol fermentation of red oak acid prehydrolysate by the yeast Pichia stipitis CBS 5776. Enzyme Microb. Technol. 8, 439–444.

    Article  CAS  Google Scholar 

  22. Watson, N.E., Prior, B.A., Lategan, P.M., Lussi, M. (1984) Factors in acid treated bagasse inhibiting ethanol production from d-xylose by Pachysolen tannophilus . Enzyme Microb. Technol. 6(10), 451–456.

    Article  CAS  Google Scholar 

  23. Kim, S.B., Lee, Y.Y. (1996) Fractionation of herbaceous biomass by ammonia-hydrogen peroxide percolation treatment. Appl. Biochem. Biotechnol. 57/58, 147–156.

    Article  CAS  Google Scholar 

  24. Kim, J.S., Lee, Y.Y., Park, S.C. (2000) Pretreatment of wastepaper and pulp mill sludge by aqueous ammonia and hydrogen peroxide. Appl. Biochem. Biotechnol. 84/86, 129–139.

    Article  Google Scholar 

  25. Belll, D.S., Ingram, L. O., Ben-Bassat, A., Doran, J.B., Fowler, D.E., Hall, R.G., and Wood, B.E. (1992) Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinant Escherichia coli B containing integrated genes for ethanol production. Biotechnol. Lett. 14(9), 857–862

    Article  Google Scholar 

  26. Lindsay, S.E., Bothast, R.J., and Ingram, L.O. (1995) Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures. Appl. Microbiol. Biotechnol. 43(1), 70–75

    Article  CAS  Google Scholar 

  27. Asghari1, A., Bothast, R.J., Doran, J.B., and Ingram, L.O. (1996) Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. J. Ind. Microbiol. Biotechnol. 16(1), 42–47

    Google Scholar 

  28. Gupta R, Kim T.H., Lee YY. (2007) Substrate dependency of sugar yield with ammonia treated biomass using xylanase supplementation. Appl. Biochem. Biotechnol. doi: 10.1007/s12010–007–8071–5.

    Google Scholar 

  29. Kim, T.H., Taylor, F., Hicks, K.B.(2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour. Technol.. 99(13), 5694–56702.

    Article  CAS  Google Scholar 

  30. NREL (National Renewable Energy Laboratory in Golden, CO) (1996) “Enzymatic Saccharification of Lignocellulosic Biomass” in the LAP (Laboratory Analytical Procedure), LAP-009, Primary authors; Larry Brown and Robert Torget, http://www1.eere.energy.gov/biomass/analytical_procedures.html

  31. NREL (National Renewable Energy Laboratory in Golden, CO) (2004), “Procedure Title: Determination of Structural Carbohydrates and Lignin in Biomass Version” in the LAP (Laboratory Analytical Procedure), LAP-002, 003, 004, 017, and 019, Primary author; Amie Sluiter, http://www1.eere.energy.gov/biomass/analytical_procedures.html

  32. NREL (National Renewable Energy Laboratory in Golden, CO) (2004) “Determination of Sugar, Byproducts and Degradation Products in Liquid Fraction Process Sample” in the LAP (Laboratory Analytical Procedure), Primary authors; Amie Sluiter, http://www1.eere.energy.gov/biomass/analytical_procedures.html

  33. NREL (National Renewable Energy Laboratory in Golden, CO) (2000) “SSF Experimental Protocols: Lignocellulosic Biomass Hydrolysis and Fermentation” in the LAP (Laboratory Analytical Procedure), LAP-008, Primary authors; Nancy Dowe and Jim McMillan, http://www1.eere.energy.gov/biomass/analytical_procedures.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kim, T.H., Gupta, R., Lee, Y.Y. (2009). Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production. In: Mielenz, J. (eds) Biofuels. Methods in Molecular Biology, vol 581. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-214-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-214-8_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-213-1

  • Online ISBN: 978-1-60761-214-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics