Skip to main content

High-Throughput Screening of Plant Cell-Wall Composition Using Pyrolysis Molecular Beam Mass Spectroscopy

  • Protocol
  • First Online:
Biofuels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 581))

Summary

We describe a high-throughput method for estimating cell-wall chemistry traits using analytical pyrolysis. The instrument used to perform the high-throughput cell-wall chemistry analysis consists of a commercially available pyrolysis unit and autosampler coupled to a custom-built molecular beam mass spectrometer. The system is capable of analyzing approximately 42 biomass samples per hour. Lignin content and syringyl to guaiacol (S/G) ratios can be estimated directly from the spectra and differences in cell wall chemistry in large groups of samples can easily be identified using multivariate statistical data analysis methods. The utility of the system is demonstrated on a set of 800 greenhouse-grown poplar trees grown under two contrasting nitrogen treatments. High-throughput analytical pyrolysis was able to determine that the lignin content varied between 13 and 28% and the S/G ratio ranged from 0.5 to 1.5. There was more cell-wall chemistry variation in the plants grown under high nitrogen conditions than trees grown under nitrogen-deficiency conditions. Analytical pyrolysis allows the user to rapidly screen large numbers of samples at low cost, using very little sample material while producing reliable and reproducible results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meuzelaar, H. L. C., J. Haverkamp and F. Hileman, D. (1982). Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials. New York, Elsevier

    Google Scholar 

  2. van Baar, B. L. M. (2000). Characterization of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiology Reviews 24 (2): 193–219

    Article  Google Scholar 

  3. Smedsgaard, J. and J. C. Frisvad (1996). Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extracts. Journal of Microbiological Methods 25 (1): 5–17

    Article  CAS  Google Scholar 

  4. Goodacre, R., E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell and P. J. Rooney (1998). Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144 : 1157–1170

    Article  CAS  Google Scholar 

  5. Del Rio, J. C., A. Guitierrez, J. Romero, M. J. Martinez and A. T. Martinez (2001). Identification of residual lignin markers in eucalypt kraft pulps by Py-GC/MS. Journal of Analytical and Applied Pyrolysis 58–59 : 425–439

    Google Scholar 

  6. Faix, O., J. Bremer, O. Schmidt and J. T. Stevanovic (1991). Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spectroscopy. Journal of Analytical and Applied Pyrolysis 21 : 147–162

    Article  CAS  Google Scholar 

  7. Faix, O., D. Meier and I. Grobe (1987). Studies on isolated lignins and lignins in woody materials by pyrolysis-gas chromatography- mass spectrometry and off-line pyrolysis-gas chromatography with flame ionization detection. Journal of Analytical and Applied Pyrolysis 11 : 403–416

    Article  CAS  Google Scholar 

  8. Izumi, A., K. Kuroda, H. Ohi and A. Yamaguchi (1995). Structural analysis of lignin by pyrolysis-gas chromatography (III). Comparative studies of pyrolysis-gas chromatography and nitrobenzene oxidation for the determination of lignin comosition in hardwood. Kami-Pa Gikyo shi 49 (9): 61

    Google Scholar 

  9. Martin, F., C. Saiz- Jimenez and F. J. Gonzalez-Vila (1979). Pyrolysis-gas chromatography-mass spectrometry of lignins. Holzforschung 33 (6): 210–212

    Article  CAS  Google Scholar 

  10. Sonoda, T., T. Ona, H. Yokoi, Y. Ishida, H. Ohtani and S. Tsuge (2001). Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples. Analytical Chemistry (Washington DC, United States) 73 (22): 5429–5435

    Article  CAS  Google Scholar 

  11. Rodrigues, J., J. Graca and H. Pereira (2001). Influence of tree eccentric growth on syringyl/guaiacyl ratio in Eucalyptus globulus wood lignin assessed by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis 58–59 : 481–489

    Article  Google Scholar 

  12. Rodrigues, J., D. Meier, O. Faix and H. Pereira (1999). Determination of tree-to-tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis 48 (2): 121–128

    Article  CAS  Google Scholar 

  13. Davis, M., Megraw, R., Sewell, M., Evans, R., Neale, D., West, D., Elam, C., Wiselogel, A., Wheeler, N., Jech, K., Tuskan, G. and Dinus, R. (1999). TAPPI Pulping Conference. Orlando, FL: TAPPI Press 3 , 1077–1081, Oct. 31-Nov. 4, 1999

    Google Scholar 

  14. Evans, R. J. and T. A. Milne (1987). Molecular characterization of the pyrolysis of biomass. 2. Applications. Energy & Fuels 1 (4): 311–319

    Article  CAS  Google Scholar 

  15. Evans, R. J. and T. A. Milne (1987). Molecular characterization of the pyrolysis of biomass. Energy and Fuels 1 (2): 123–137

    Article  CAS  Google Scholar 

  16. Evans, R. J., T. A. Milne and M. N. Soltys (1986). Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels. III. Primary pyrolysis of lignin. Journal of Analytical and Applied Pyrolysis 9 (3): 207–236

    Article  CAS  Google Scholar 

  17. Kelley, S. S., J. Jellison and B. Goodell (2002). Use of NIR and pyrolysis-MBMS coupled with multivariate analysis for detecting the chemical changes associated with brown-rot biodegradation of spruce wood. FEMS Microbiology Letters 209 (1): 107–111

    Article  CAS  Google Scholar 

  18. Agblevor, F. A., R. J. Evans and K. D. Johnson (1994). Molecular-beam mass-spectrometric analysis of lignocellulosic materials. I. Herbaceous biomass. Journal of Analytical and Applied Pyrolysis 30 (2): 125–144

    Article  CAS  Google Scholar 

  19. Sewell, M. M., M. F. Davis, G. A. Tuskan, N. C. Wheeler, C. C. Elam, D. L. Bassoni and D. B. Neale (2002). Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theoretical and Applied Genetics 104 (2–3): 214–222

    Article  CAS  Google Scholar 

  20. Sykes, R., B. Kodrzycki, G. Tuskan, K. Foutz and M. Davis (2008). Within tree variability of lignin composition in Populus. Wood Science and Technology 42 (8): 649–661

    Article  CAS  Google Scholar 

  21. Vermerris, W. and J. J. Boon (2001). Tissue-specific patterns of lignification are disturbed in the brown midrib2 mutant of maize (Zea mays L.). Journal of Agricultural and Food Chemistry 49 (2): 721–728

    Article  CAS  Google Scholar 

  22. Tuskan, G., D. West, H. D. Bradshaw, D. Neale, M. Sewell, N. Wheeler, B. Megraw, K. Jech, A. Wiselogel, R. Evans, C. Elam, M. Davis and R. Dinus (1999). Two high-throughput techniques for determining wood properties as part of a molecular genetics analysis of hybrid poplar and loblolly pine. Applied Biochemistry and Biotechnology 77–79 (Twentieth Symposium on Biotechnology for Fuels and Chemicals, 1998): 55–65

    Article  Google Scholar 

  23. McNaught, A. D and A. Wilkinson (1997). IUPAC Compendium of Chemical Terminology. Oxford: Blackwell Science

    Google Scholar 

  24. Johnson, R. A. and D. W. Wichern (2002). Applied Multivariate Statistical Analysis. Upper Saddle River, NJ: Prentice Hall

    Google Scholar 

Download references

Acknowledgment

The analysis of the poplar segregating population was supported by a grant from the Department of Energy, Office of Science, Office of Biological and Environmental Research, Grant Award No. DE-FG02–05ER64114 (to Matias Kirst). Support for manuscript preparation (RS, MY, and MD) was provided by the BioEnergy Research Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sykes, R., Yung, M., Novaes, E., Kirst, M., Peter, G., Davis, M. (2009). High-Throughput Screening of Plant Cell-Wall Composition Using Pyrolysis Molecular Beam Mass Spectroscopy. In: Mielenz, J. (eds) Biofuels. Methods in Molecular Biology, vol 581. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-214-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-214-8_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-213-1

  • Online ISBN: 978-1-60761-214-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics