Skip to main content

Characterization of Platelet Proteins Using Peptide Centric Proteomics

  • Protocol
Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 564))

Summary

In modern proteomics, undersampling of low abundant, cumbersome, and hydrophobic proteins states one of the major problems. To overcome this, especially in two 2D-PAGE (two-dimensional polyacrylamide gel electrophoresis) eminent drawbacks, the so-called peptide-centric techniques have been developed. These approaches do not separate proteins prior to digestion, but instead proteolytically generate peptide mixtures after it. However, by this procedure already complex protein mixtures become even more extensive peptide mixtures. Particularly, when dealing with large proteomes, the generated sample complexity is vast and therefore difficult to analyze. When separated and analyzed by LC/MS, too many peptides may enter the mass spectrometer at a certain time point, and only a small fraction of ions is selected for subsequent MS/MS analysis. Although protein hydrophobicity and size play minor roles (as long as protease cleavage sites are accessible), low copy number can severely limit identification rates. To reduce the amount of peptides entering the mass spectrometer simultaneously without the loss of overall proteomic information, different techniques have been developed. Among these, an approach is represented by COFRADIC (Combined Fractional Diagonal Chromatography).

COFRADIC is a chromatography-based technique enabling the sorting of peptides due to retention time shifts after a specific modification step. In the original approach, a complex peptide mixture is separated by a primary RP-HPLC (reversed-phase high-performance liquid chromatography) run and fractions are retained. Subsequently, these fractions are modified to specifically change retention times of peptides and separated in one or more secondary RP-HPLC runs. In this chapter, COFRADIC approaches for methionine or cysteine containing as well as N-terminal peptides are described.

Besides the reduction of sample complexity, the major advantage of COFRADIC might be seen in its versatility. Nearly every feature unique for a subset of peptides, which can be specifically modified by a sorting reaction, is accessible for COFRADIC. Among these are protein phosphorylation, N-glycosylation, and in vivo protein processing sites. Finally, COFRADIC allows the analysis of large numbers of samples and is highly automatable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–21.

    PubMed  Google Scholar 

  2. Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–43.

    PubMed  CAS  Google Scholar 

  3. Wilkins, M. R., Gasteiger, E., Sanchez, J. C., Bairoch, A., and Hochstrasser, D. F. (1998) Two-dimensional gel electrophoresis for proteome projects: the effects of protein hydrophobicity and copy number. Electrophoresis 19, 1501–5.

    Article  PubMed  CAS  Google Scholar 

  4. Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., and Aebersold, R. (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 97, 9390–5.

    Article  PubMed  CAS  Google Scholar 

  5. Washburn, M. P., Wolters, D., and Yates, J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–7.

    Article  PubMed  CAS  Google Scholar 

  6. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–9.

    Article  PubMed  CAS  Google Scholar 

  7. Gevaert, K., Van Damme, P., Ghesquiere, B., Impens, F., Martens, L., Helsens, K., and Vandekerckhove, J. (2007) A la carte proteomics with an emphasis on gel-free techniques. Proteomics 7, 2698–718.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, J. R., and Hartley, B. S. (1966) Location of disulphide bridges by diagonal paper electrophoresis. The disulphide bridges of bovine chymotrypsinogen A Biochem J 101, 214–28.

    PubMed  CAS  Google Scholar 

  9. Gevaert, K., Van Damme, J., Goethals, M., Thomas, G. R., Hoorelbeke, B., Demol, H.,Martens, L., Puype, M., Staes, A., and Vandekerckhove, J. (2002) Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis: identification of more than 800 Escherichia coli proteins. Mol Cell Proteomics 1, 896–903.

    Article  PubMed  CAS  Google Scholar 

  10. Gevaert, K., Ghesquiere, B., Staes, A., Martens, L., Van Damme, J., Thomas, G. R., and Vandekerckhove, J. (2004) Reversible labeling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies. Proteomics 4, 897–908.

    Article  PubMed  CAS  Google Scholar 

  11. Gevaert, K., Goethals, M., Martens, L., Van Damme, J., Staes, A., Thomas, G. R., and Vandekerckhove, J. (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol 21, 566–9.

    Article  PubMed  CAS  Google Scholar 

  12. Ji, J., Chakraborty, A., Geng, M., Zhang, X., Amini, A., Bina, M., and Regnier, F. (2000) Strategy for qualitative and quantitative analysis in proteomics based on signature peptides. J Chromatogr B Biomed Sci Appl 745, 197–210.

    Article  PubMed  CAS  Google Scholar 

  13. Clark, E. A., Brugge, J. S. (1996) Platelets, Oxford University Press, Oxford.

    Google Scholar 

  14. Staes, A., Van Damme, P., Helsens, K., Demol, H., Vandekerckhove, J., and Gevaert, K. (2008) Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 8, 1362–70.

    Article  PubMed  CAS  Google Scholar 

  15. Gevaert, K., Pinxteren, J., Demol, H., Hugelier, K., Staes, A., Van Damme, J., Martens, L., and Vandekerckhove, J. (2006) Four stage liquid chromatographic selection of methionyl peptides for peptide-centric proteome analysis: the proteome of human multipotent adult progenitor cells. J Proteome Res 5, 1415–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Sickmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Simon, O., Wortelkamp, S., Sickmann, A. (2009). Characterization of Platelet Proteins Using Peptide Centric Proteomics. In: Reinders, J., Sickmann, A. (eds) Proteomics. Methods in Molecular Biology™, vol 564. Humana Press. https://doi.org/10.1007/978-1-60761-157-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-157-8_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-156-1

  • Online ISBN: 978-1-60761-157-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics