Skip to main content

Analysis of Telomere Dynamics in Mouse Spermatogenesis

  • Protocol
  • First Online:
Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 558))

Abstract

A complex meiotic differentiation program generates genetically diverse haploid cells (gametes or spores) to compensate for the genome doubling that occurs at fertilization. To this end, homologous chromosomes must undergo pairing and recombination before they become partitioned in haploid sets by two consecutive meiotic divisions. Chromosome ends (telomeres) contain a protective complex that is crucial for genomic stability. In meiosis, telomeres become key players in the chromosome pairing process during prophase to the first meiotic division. At the onset of prophase I, telomeres attach to the nuclear envelope, about which they move and transiently cluster in a limited sector of the nuclear periphery. The dynamic clustering of telomeres (bouquet formation) occurs at the onset of the zygotene substage and supports homologue recognition, pairing and telomere DNA metabolism. The following chapter outlines the protocols that have been useful in studies on telomere dynamics and the frequency of earliest prophase I stages in testis suspensions of the mouse, and may be useful to address similar questions in particular mouse mutants that become increasingly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moyzis, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., Meyne, J., Ratliff, R. L., and Wu, J. R. (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 85, 6622–6626.

    Article  PubMed  CAS  Google Scholar 

  2. Kipling, D. and Cooke, H. J. (1990) Hypervariable ultra-long telomeres in mice. Nature 347, 400–402.

    Article  PubMed  CAS  Google Scholar 

  3. de Lange, T. (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110.

    Article  PubMed  Google Scholar 

  4. Luderus, M. E., van Steensel, B., Chong, L., Sibon, O. C., Cremers, F. F., and de Lange, T. (1996) Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex. J. Cell Biol. 135, 867–881.

    Article  PubMed  CAS  Google Scholar 

  5. Scherthan, H. (2001) A bouquet makes ends meet. Nat. Rev. Mol. Cell Biol. 2, 621–627.

    Article  PubMed  CAS  Google Scholar 

  6. Harper, L., Golubovskaya, I., and Cande, W. Z. (2004) A bouquet of chromosomes. J. Cell Sci. 117, 4025–4032.

    Article  PubMed  CAS  Google Scholar 

  7. Scherthan, H. (2006) Meiotic Telomeres, in Telomeres, 2nd ed.(de Lange, T., Zakian, V., and Blackburn, E., eds.), CSH Press, Cold Spring Harbor, pp. 225–260.

    Google Scholar 

  8. Joseph, I. and Lustig, A. J. (2007) Telomeres in meiotic recombination: the yeast side story. Cell. Mol. Life Sci. 64, 125–130.

    Article  PubMed  CAS  Google Scholar 

  9. Roig, I., Liebe, B., Egozcue, J., Cabero, L., Garcia, M., and Scherthan, H. (2004) Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma 113, 22–33.

    Article  PubMed  CAS  Google Scholar 

  10. Pfeifer, C., Scherthan, H., and Thomsen, P. D. (2003) Sex-specific telomere redistribution and synapsis initiationin cattle oogenesis. Dev. Biol. 255, 206–215.

    Article  PubMed  CAS  Google Scholar 

  11. Liebe, B., Petukhova, G., Barchi, M., Bellani, M., Braselmann, H., Nakano, T., Pandita, T. K., Jasin, M., Fornace, A., Meistrich, M. L., Baarends, W. M., Schimenti, J., de Lange, T., Keeney, S., Camerini-Otero, R. D., and Scherthan, H. (2006) Mutations that affect meiosis in male mice influence the dynamics of the mid-preleptotene and bouquet stages. Exp. Cell Res. 312, 3768–3781.

    Article  PubMed  CAS  Google Scholar 

  12. Scherthan, H., Weich, S., Schwegler, H., Heyting, C., Harle, M., and Cremer, T. (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J. Cell Biol. 134, 1109–1125.

    Article  PubMed  CAS  Google Scholar 

  13. Pandita, T. K., Westphal, C. H., Anger, M., Sawant, S. G., Geard, C. R., Pandita, R. K., and Scherthan, H. (1999) Atm inactivation results in aberrant telomere clustering during meiotic prophase. Mol. Cell. Biol. 19, 5096–5105.

    PubMed  CAS  Google Scholar 

  14. Fernandez-Capetillo, O., Liebe, B., Scherthan, H., and Nussenzweig, A. (2003) H2AX regulates meiotic telomere clustering. J. Cell Biol. 163, 15–20.

    Article  PubMed  CAS  Google Scholar 

  15. Liebe, B., Alsheimer, M., Hoog, C., Benavente, R., and Scherthan, H. (2004) Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol. Biol. Cell 15, 827–837.

    Article  PubMed  CAS  Google Scholar 

  16. Revenkova, E., Eijpe, M., Heyting, C., Hodges, C. A., Hunt, P. A., Liebe, B., Scherthan, H., and Jessberger, R. (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat. Cell Biol. 6, 555–562.

    Article  PubMed  CAS  Google Scholar 

  17. Voet, T., Liebe, B., Labaere, C., Marynen, P., and Scherthan, H. (2003) Telomere-independent homologue pairing and checkpoint escape of accessory ring chromosomes in male mouse meiosis. J. Cell Biol. 162, 795–807.

    Article  PubMed  CAS  Google Scholar 

  18. Florijn, R. J., Slats, J., Tanke, H. J., and Raap, A. K. (1995 ) Analysis of antifading reagents for fluorescence microscopy. Cytometry 19, 177–182.

    Article  PubMed  CAS  Google Scholar 

  19. Russell, L. D., Ettlin, R. A., Hikim, A. P., and Clegg, E. D. (1990) Histological and Histopathological Evaluation of the Testis, Cache River, Clearwater, FL.

    Google Scholar 

  20. Vergouwen, R. P. F. A., Huiskamp, R., Bas, r. J., Roepers-Gajadien, H. L., Davids, J. A. G., and De Rooij, D. G. (1993) Postnatal development of testicular cell populations in mice. J. Reprod. Fertil. 99, 479–485.

    Article  PubMed  CAS  Google Scholar 

  21. Bellvé, A. R. (1993) Purification, culture, and fractionation of spermatogenic cells. Methods Enzymol. 225, 84–113.

    Article  PubMed  Google Scholar 

  22. Mahadevaiah, S. K., Turner, J. M., Baudat, F., Rogakou, E. P., de Boer, P., Blanco-Rodriguez, J., Jasin, M., Keeney, S., Bonner, W. M., and Burgoyne, P. S. (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat. Genet. 27, 271–276.

    Article  PubMed  CAS  Google Scholar 

  23. Crow, E. L. and Gardner, R. S. (1959) Confidence intervals for the expectation of a poisson variable. Biometrika 46, 441–453.

    Google Scholar 

  24. Barchi, M., Mahadevaiah, S. K., Di Giacomo, M., Baudat, F., de Rooij, D. G., Burgoyne, P. S., Jasin, M., and Keeney, S. (2005) Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol. Cell. Biol. 25, 7203–7215.

    Article  PubMed  CAS  Google Scholar 

  25. Bellani, M. A., Romanienko, P. J., Cairatti, D. A., and Camerini-Otero, R. D. (2005) SPO11 is required for sex body formation and Spo11heterozygosity rescues the prophase arrest of Atm-/-spermatocytes. J. Cell Sci. 118, 3233–3245.

    Article  PubMed  CAS  Google Scholar 

  26. Scherthan, H., Kohler, M., Vogt, P., von Malsch, K., and Schweizer, D. (1992) Chromosomal in situ hybridization with double-labeled DNA: signal amplification at the probe level. Cytogenet. Cell Genet. 60, 4–7.

    Article  PubMed  CAS  Google Scholar 

  27. Hopman, A. H., van Hooren, E., van de Kaa, C. A., Vooijs, P. G., and Ramaekers, F. C. (1991) Detection of numerical chromosome aberrations using in situ hybridization in paraffin sections of routinely processed bladder cancers. Mod. Pathol. 4, 503–513.

    PubMed  CAS  Google Scholar 

  28. Scherthan, H. and Cremer, T. (1994) Methodology of Non Isotopic In Situ-Hybridization in Embedded Tissue Sections., in Methods in Molecular Genetics,vol. 5 (Adolph, K. W., ed.), Academic Press, San Diego, pp. 223–238.

    Google Scholar 

  29. Meyer-Ficca, M., Muller-Navia, J., and Scherthan, H. (1998) Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J. Cell Sci. 111, 1363–1370.

    PubMed  CAS  Google Scholar 

  30. Lansdorp, P. M. (1996) Close encounters of the PNA kind. Nat. Biotechnol. 14, 1653.

    Article  PubMed  CAS  Google Scholar 

  31. Steinmüller, J., Schleiermacher, E., and Scherthan, H. (1993) Direct detection of repetitive, whole chromosome paint and telomere DNA probes by immunogold electron microscopy. Chromosome Res. 1, 45–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank B. Liebe and C. Adelfalk for critical reading of the manuscript. This work was in part supported by the Deutsche Forschungsgemeinschaft and H. H. Ropers, Max-Planck-Inst. of Molecular Genetics, Berlin, Germany.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Scherthan, H. (2009). Analysis of Telomere Dynamics in Mouse Spermatogenesis. In: Keeney, S. (eds) Meiosis. Methods in Molecular Biology, vol 558. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-103-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-103-5_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-102-8

  • Online ISBN: 978-1-60761-103-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics