Skip to main content

Etiology and Pathogenesis of Sjögren’s Syndrome with Special Emphasis on the Salivary Glands

  • Chapter
  • First Online:
Sjögren’s Syndrome

Abstract

Pathogenesis from the Greek pathos, “disease,” and genesis, “creation,” is the process by which an etiological factor and subsequent downstream events cause disease. Although in Sjögren’s syndrome (SS), alike for most other autoimmune diseases, the enigma leading to a pathogenic attack against self has not yet been solved, the disease must be mediated by specific immune reactions against somatic cells to qualify as an autoimmune disease. In SS the autoimmune response is greatly directed against the exocrine glands, which, as histopathological hallmark of the disease, display persistent focal mononuclear cell infiltrates. Clinically, the disease in most patients is manifested by two local severe symptoms: dryness of the mouth (xerostomia) and the eyes (keratoconjunctivitis sicca). A number of systemic features have also been described and the presence of autoantibodies against the ubiquitously expressed ribonucleoprotein particles Ro (SSA) and La (SSB) further underlines the systemic nature of SS. The original explanatory concept for the pathogenesis of SS proposed a specific, self-perpetuating, immune-mediated loss of acinar and ductal cells as the principal cause of salivary gland hypofunction. Although straightforward and plausible, the hypothesis, however, falls short of accommodating several SS-related phenomena and experimental findings. Consequently, researchers considered immune-mediated salivary gland dysfunction prior to glandular destruction and atrophy as potential molecular mechanisms underlying the symptoms of dryness in SS. Accordingly, apoptosis, fibrosis, and atrophy of the salivary glands would represent consequences of salivary gland hypofunction. This chapter will also put into perspective research involving the etiology of SS by discussing the results in a broader context along lines drawn by the different basic concepts of immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American–European Consensus Group. Ann Rheum Dis. 2002;61:554–8.

    PubMed  CAS  Google Scholar 

  2. Jonsson R, Bowman SJ, Gordon TP. Sjögren’s syndrome. In: Koopman WJ, editor. Arthritis and allied conditions. 15th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. pp. 1681–705.

    Google Scholar 

  3. Hjelmervik TO, Petersen K, Jonassen I, Jonsson R, Bolstad AI. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52:1534–44.

    PubMed  CAS  Google Scholar 

  4. Båve U, Nordmark G, Lövgren T, et al. Activation of the type I interferon system in primary Sjögren’s syndrome: a possible etiopathogenic mechanism. Arthritis Rheum. 2005;52:1185–95.

    PubMed  Google Scholar 

  5. Gottenberg JE, Cagnard N, Lucchesi C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome. Proc Natl Acad Sci USA. 2006;103:2770–5.

    PubMed  CAS  Google Scholar 

  6. Delaleu N, Jonsson R, Koller MM. Sjögren’s syndrome. Eur J Oral Sci. 2005;113:101–13.

    PubMed  CAS  Google Scholar 

  7. Delaleu N, Jonsson MV, Appel S, Jonsson R. New concepts in the pathogenesis of Sjögren’s syndrome. Rheum Dis Clin North Am. 2008;34:833–45, vii.

    PubMed  Google Scholar 

  8. Aziz KE, McCluskey PJ, Wakefield D. Characterisation of follicular dendritic cells in labial salivary glands of patients with primary Sjögren syndrome: comparison with tonsillar lymphoid follicles. Ann Rheum Dis. 1997;56:140–3.

    PubMed  CAS  Google Scholar 

  9. Manoussakis MN, Boiu S, Korkolopoulou P, et al. Rates of infiltration by macrophages and dendritic cells and expression of interleukin-18 and interleukin-12 in the chronic inflammatory lesions of Sjögren’s syndrome: correlation with certain features of immune hyperactivity and factors associated with high risk of lymphoma development. Arthritis Rheum. 2007;56:3977–88.

    PubMed  CAS  Google Scholar 

  10. El Miedany YM, Ahmed I, Mourad HG, et al. Quantitative ultrasonography and magnetic resonance imaging of the parotid gland: can they replace the histopathologic studies in patients with Sjögren’s syndrome? Joint Bone Spine. 2004;71:29–38.

    PubMed  Google Scholar 

  11. Wernicke D, Hess H, Gromnica-Ihle E, Krause A, Schmidt WA. Ultrasonography of salivary glands—a highly specific imaging procedure for diagnosis of Sjögren’s syndrome. J Rheumatol. 2008;35:285–93.

    PubMed  Google Scholar 

  12. Janeway CA, Travers P, Walport M, Shlomchik M. Immunobiology: the immunesystem in health and disease. 6th ed. New York, NY: Garland Science Publishing; 2005.

    Google Scholar 

  13. Mantovani A, Bonecchi R, Locati M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol. 2006;6:907–18.

    PubMed  CAS  Google Scholar 

  14. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354:610–21.

    PubMed  CAS  Google Scholar 

  15. Amft N, Bowman SJ. Chemokines and cell trafficking in Sjögren’s syndrome. Scand J Immunol. 2001;54:62–9.

    PubMed  CAS  Google Scholar 

  16. Salomonsson S, Jonsson MV, Skarstein K, et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjögren’s syndrome. Arthritis Rheum. 2003;48:3187–201.

    PubMed  CAS  Google Scholar 

  17. Szodoray P, Alex P, Jonsson MV, et al. Distinct profiles of Sjögren’s syndrome patients with ectopic salivary gland germinal centers revealed by serum cytokines and BAFF. Clin Immunol. 2005;117:168–76.

    PubMed  CAS  Google Scholar 

  18. Delaleu N, Immervoll H, Cornelius J, Jonsson R. Biomarker profiles in serum and saliva of experimental Sjögren’s syndrome: associations with specific autoimmune manifestations. Arthritis Res Ther. 2008;10:R22.

    PubMed  Google Scholar 

  19. Delaleu N, Madureira AC, Immervoll H, Jonsson R. Inhibition of experimental Sjögren’s syndrome through immunization with HSP60 and its peptide amino acids 437–460. Arthritis Rheum. 2008;58:2318–28.

    PubMed  CAS  Google Scholar 

  20. Mehrad B, Keane MP, Strieter RM. Chemokines as mediators of angiogenesis. Thromb Haemost. 2007;97:755–62.

    PubMed  CAS  Google Scholar 

  21. Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6:209.

    PubMed  Google Scholar 

  22. Szekanecz Z, Gaspar L, Koch AE. Angiogenesis in rheumatoid arthritis. Front Biosci. 2005;10:1739–53.

    PubMed  CAS  Google Scholar 

  23. Mikulowska-Mennis A, Xu B, Berberian JM, Michie SA. Lymphocyte migration to inflamed lacrimal glands is mediated by vascular cell adhesion molecule-1/alpha(4)beta(1) integrin, peripheral node addressin/L-selectin, and lymphocyte function-associated antigen-1 adhesion pathways. Am J Pathol. 2001;159:671–81.

    PubMed  CAS  Google Scholar 

  24. Jonsson MV, Delaleu N, Jonsson R. Animal models of Sjögren’s syndrome. Clin Rev Allergy Immunol. 2007;32:215–24.

    PubMed  CAS  Google Scholar 

  25. Cha S, Peck AB, Humphreys-Beher MG. Progress in understanding autoimmune exocrinopathy using the non-obese diabetic mouse: an update. Crit Rev Oral Biol Med. 2002;13:5–16.

    PubMed  CAS  Google Scholar 

  26. Kaufman E, Lamster IB. The diagnostic applications of saliva—a review. Crit Rev Oral Biol Med. 2002;13:197–212.

    PubMed  Google Scholar 

  27. Chikui T, Yonetsu K, Izumi M, Eguchi K, Nakamura T. Abnormal blood flow to the submandibular glands of patients with Sjögren’s syndrome: Doppler waveform analysis. J Rheumatol. 2000;27:1222–8.

    PubMed  CAS  Google Scholar 

  28. Berggreen E, Nylokken K, Delaleu N, Hajdaragic-Ibricevic H, Jonsson MV. Impaired vascular responses to parasympathetic nerve stimulation and muscarinic receptor activation in the submandibular gland in nonobese diabetic mice. Arthritis Res Ther. 2009;11:R18.

    PubMed  Google Scholar 

  29. Mitsias DI, Kapsogeorgou EK, Moutsopoulos HM. Sjögren’s syndrome: why autoimmune epithelitis? Oral Dis. 2006;12:523–32.

    PubMed  CAS  Google Scholar 

  30. Dimitriou ID, Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN. Establishment of a convenient system for the long-term culture and study of non-neoplastic human salivary gland epithelial cells. Eur J Oral Sci. 2002;110:21–30.

    PubMed  Google Scholar 

  31. Jonsson R, Klareskog L, Backman K, Tarkowski A. Expression of HLA-D-locus (DP, DQ, DR)-coded antigens, beta 2-microglobulin, and the interleukin 2 receptor in Sjögren’s syndrome. Clin Immunol Immunopathol. 1987;45:235–43.

    PubMed  CAS  Google Scholar 

  32. Spachidou MP, Bourazopoulou E, Maratheftis CI, et al. Expression of functional Toll-like receptors by salivary gland epithelial cells: increased mRNA expression in cells derived from patients with primary Sjögren’s syndrome. Clin Exp Immunol. 2007;147:497–503.

    PubMed  CAS  Google Scholar 

  33. Kawakami A, Nakashima K, Tamai M, et al. Toll-like receptor in salivary glands from patients with Sjögren’s syndrome: functional analysis by human salivary gland cell line. J Rheumatol. 2007;34:1019–26.

    PubMed  CAS  Google Scholar 

  34. Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    PubMed  CAS  Google Scholar 

  35. Marshak-Rothstein A, Rifkin IR. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu Rev Immunol. 2007;25:419–41.

    PubMed  CAS  Google Scholar 

  36. Kapsogeorgou EK, Moutsopoulos HM, Manoussakis MN. Functional expression of a costimulatory B7.2 (CD86) protein on human salivary gland epithelial cells that interacts with the CD28 receptor, but has reduced binding to CTLA4. J Immunol. 2001;166:3107–13.

    PubMed  CAS  Google Scholar 

  37. Dimitriou ID, Kapsogeorgou EK, Moutsopoulos HM, Manoussakis MN. CD40 on salivary gland epithelial cells: high constitutive expression by cultured cells from Sjögren’s syndrome patients indicating their intrinsic activation. Clin Exp Immunol. 2002;127:386–92.

    PubMed  CAS  Google Scholar 

  38. Manoussakis MN, Dimitriou ID, Kapsogeorgou EK, et al. Expression of B7 costimulatory molecules by salivary gland epithelial cells in patients with Sjögren’s syndrome. Arthritis Rheum. 1999;42:229–39.

    PubMed  CAS  Google Scholar 

  39. Abu-Helu RF, Dimitriou ID, Kapsogeorgou EK, Moutsopoulos HM, Manoussakis MN. Induction of salivary gland epithelial cell injury in Sjögren’s syndrome: in vitro assessment of T cell-derived cytokines and Fas protein expression. J Autoimmun. 2001;17:141–53.

    PubMed  CAS  Google Scholar 

  40. Fox RI, Kang HI, Ando D, Abrams J, Pisa E. Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J Immunol. 1994;152:5532–9.

    PubMed  CAS  Google Scholar 

  41. Xanthou G, Polihronis M, Tzioufas AG, Paikos S, Sideras P, Moutsopoulos HM. “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjögren’s syndrome patients: possible participation in lymphoid structure formation. Arthritis Rheum. 2001;44:408–18.

    PubMed  CAS  Google Scholar 

  42. Matin K, Salam MA, Akhter J, Hanada N, Senpuku H. Role of stromal-cell derived factor-1 in the development of autoimmune diseases in non-obese diabetic mice. Immunology. 2002;107:222–32.

    PubMed  CAS  Google Scholar 

  43. Bolstad AI, Eiken HG, Rosenlund B, Alarcon-Riquelme ME, Jonsson R. Increased salivary gland tissue expression of Fas, Fas ligand, cytotoxic T lymphocyte-associated antigen 4, and programmed cell death 1 in primary Sjögren’s syndrome. Arthritis Rheum. 2003;48:174–85.

    PubMed  CAS  Google Scholar 

  44. Kong L, Ogawa N, McGuff HS, et al. Bcl-2 family expression in salivary glands from patients with primary Sjögren’s syndrome: involvement of Bax in salivary gland destruction. Clin Immunol Immunopathol. 1998;88:133–41.

    PubMed  CAS  Google Scholar 

  45. Ohlsson M, Skarstein K, Bolstad AI, Johannessen AC, Jonsson R. Fas-induced apoptosis is a rare event in Sjögren’s syndrome. Lab Invest. 2001;81:95–105.

    PubMed  CAS  Google Scholar 

  46. Goicovich E, Molina C, Perez P, et al. Enhanced degradation of proteins of the basal lamina and stroma by matrix metalloproteinases from the salivary glands of Sjögren’s syndrome patients: correlation with reduced structural integrity of acini and ducts. Arthritis Rheum. 2003;48:2573–84.

    PubMed  CAS  Google Scholar 

  47. Perez P, Goicovich E, Alliende C, et al. Differential expression of matrix metalloproteinases in labial salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum. 2000;43:2807–17.

    PubMed  CAS  Google Scholar 

  48. Jonsson MV, Skarstein K, Jonsson R, Brun JG. Serological implications of germinal center-like structures in primary Sjögren’s syndrome. J Rheumatol. 2007;34:2044–9.

    PubMed  Google Scholar 

  49. Nakamura H, Kawakami A, Tominaga M, et al. Expression of CD40/CD40 ligand and Bcl-2 family proteins in labial salivary glands of patients with Sjögren’s syndrome. Lab Invest. 1999;79:261–9.

    PubMed  CAS  Google Scholar 

  50. Coll J, Tomas S, Vilella R, Corominas J. Interleukin-2 receptor expression in salivary glands of patients with Sjögren’s syndrome. J Rheumatol. 1995;22:1488–91.

    PubMed  CAS  Google Scholar 

  51. Gerli R, Bertotto A, Cernetti C, et al. Anti-CD3 and anti-CD2-induced T-cell activation in primary Sjögren’s syndrome. Clin Exp Rheumatol. 1989;7 Suppl 3:S129–34.

    PubMed  Google Scholar 

  52. Halse AK, Wahren M, Jonsson R. Peripheral blood in Sjögren’s syndrome does not contain increased levels of T lymphocytes reactive with the recombinant Ro/SS-A 52 kD and La/SS-B 48 kD autoantigens. Autoimmunity 1996;23:25–34.

    PubMed  CAS  Google Scholar 

  53. Skopouli FN, Fox PC, Galanopoulou V, Atkinson JC, Jaffe ES, Moutsopoulos HM. T cell subpopulations in the labial minor salivary gland histopathologic lesion of Sjögren’s syndrome. J Rheumatol. 1991;18:210–4.

    PubMed  CAS  Google Scholar 

  54. Ohyama Y, Nakamura S, Matsuzaki G, et al. T-cell receptor V alpha and V beta gene use by infiltrating T cells in labial glands of patients with Sjögren’s syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79:730–7.

    PubMed  CAS  Google Scholar 

  55. Sumida T. Sjögren’s syndrome. Intern Med. 1999;38:165–8.

    PubMed  CAS  Google Scholar 

  56. Ramos-Casals M, Font J. Primary Sjögren’s syndrome: current and emergent aetiopathogenic concepts. Rheumatology (Oxford) 2005;44:1354–67.

    CAS  Google Scholar 

  57. Kong L, Ogawa N, Nakabayashi T, et al. Fas and Fas ligand expression in the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum. 1997;40:87–97.

    PubMed  CAS  Google Scholar 

  58. Ohlsson M, Szodoray P, Loro LL, Johannessen AC, Jonsson R. CD40, CD154, Bax and Bcl-2 expression in Sjögren’s syndrome salivary glands: a putative anti-apoptotic role during its effector phases. Scand J Immunol. 2002;56:561–71.

    PubMed  CAS  Google Scholar 

  59. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73.

    PubMed  CAS  Google Scholar 

  60. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52.

    PubMed  CAS  Google Scholar 

  61. Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 2007;13:139–45.

    PubMed  CAS  Google Scholar 

  62. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–50.

    PubMed  CAS  Google Scholar 

  63. Shoda LK, Young DL, Ramanujan S, et al. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 2005;23:115–26.

    PubMed  CAS  Google Scholar 

  64. Serreze DV, Chapman HD, Post CM, Johnson EA, Suarez-Pinzon WL, Rabinovitch A. Th1 to Th2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, rather than the cause, of diabetes resistance elicited by immunostimulation. J Immunol. 2001;166:1352–9.

    PubMed  CAS  Google Scholar 

  65. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4:583–94.

    PubMed  CAS  Google Scholar 

  66. Konttinen YT, Kemppinen P, Koski H, et al. T(H)1 cytokines are produced in labial salivary glands in Sjögren’s syndrome, but also in healthy individuals. Scand J Rheumatol. 1999;28:106–12.

    PubMed  CAS  Google Scholar 

  67. van Blokland SC, Versnel MA. Pathogenesis of Sjögren’s syndrome: characteristics of different mouse models for autoimmune exocrinopathy. Clin Immunol. 2002;103:111–24.

    PubMed  Google Scholar 

  68. Mitsias DI, Tzioufas AG, Veiopoulou C, et al. The Th1/Th2 cytokine balance changes with the progress of the immunopathological lesion of Sjögren’s syndrome. Clin Exp Immunol. 2002;128:562–8.

    PubMed  CAS  Google Scholar 

  69. Jonsson MV, Delaleu N, Brokstad KA, Berggreen E, Skarstein K. Impaired salivary gland function in NOD mice: association with changes in cytokine profile but not with histopathologic changes in the salivary gland. Arthritis Rheum. 2006;54:2300–5.

    PubMed  CAS  Google Scholar 

  70. Gao J, Killedar S, Cornelius JG, Nguyen C, Cha S, Peck AB. Sjögren’s syndrome in the NOD mouse model is an interleukin-4 time-dependent, antibody isotype-specific autoimmune disease. J Autoimmun. 2006;26:90–103.

    PubMed  CAS  Google Scholar 

  71. Brayer JB, Cha S, Nagashima H, et al. IL-4-dependent effector phase in autoimmune exocrinopathy as defined by the NOD. IL-4-gene knockout mouse model of Sjögren’s syndrome. Scand J Immunol. 2001;54:133–40.

    PubMed  CAS  Google Scholar 

  72. Nguyen CQ, Gao JH, Kim H, Saban DR, Cornelius JG, Peck AB. IL-4-STAT6 signal transduction-dependent induction of the clinical phase of Sjögren’s syndrome-like disease of the nonobese diabetic mouse. J Immunol. 2007;179:382–90.

    PubMed  CAS  Google Scholar 

  73. Cha S, Brayer J, Gao J, et al. A dual role for interferon-gamma in the pathogenesis of Sjögren’s syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand J Immunol. 2004;60:552–65.

    PubMed  CAS  Google Scholar 

  74. Nguyen CQ, Hu MH, Li Y, Stewart C, Peck AB. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjögren’s syndrome: findings in humans and mice. Arthritis Rheum. 2008;58:734–43.

    PubMed  CAS  Google Scholar 

  75. Gottenberg JE, Lavie F, Abbed K, et al. CD4 CD25high regulatory T cells are not impaired in patients with primary Sjögren’s syndrome. J Autoimmun. 2005;24:235–42.

    PubMed  CAS  Google Scholar 

  76. Li X, Li X, Qian L, et al. T regulatory cells are markedly diminished in diseased salivary glands of patients with primary Sjögren’s syndrome. J Rheumatol. 2007;34:2438–45.

    PubMed  Google Scholar 

  77. Christodoulou MI, Kapsogeorgou EK, Moutsopoulos NM, Moutsopoulos HM. Foxp3+ T-regulatory cells in Sjögren’s syndrome: correlation with the grade of the autoimmune lesion and certain adverse prognostic factors. Am J Pathol. 2008;173:1389–96.

    PubMed  Google Scholar 

  78. Bohnhorst JO, Bjorgan MB, Thoen JE, Jonsson R, Natvig JB, Thompson KM. Abnormal B cell differentiation in primary Sjögren’s syndrome results in a depressed percentage of circulating memory B cells and elevated levels of soluble CD27 that correlate with serum IgG concentration. Clin Immunol. 2002;103:79–88.

    PubMed  CAS  Google Scholar 

  79. Hansen A, Odendahl M, Reiter K, et al. Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum. 2002;46:2160–71.

    PubMed  CAS  Google Scholar 

  80. Hansen A, Reiter K, Ziprian T, et al. Dysregulation of chemokine receptor expression and function by B cells of patients with primary Sjögren’s syndrome. Arthritis Rheum. 2005;52:2109–19.

    PubMed  CAS  Google Scholar 

  81. Bohnhorst JO, Bjørgan MB, Thoen JE, Natvig JB, Thompson KM. Bm1–Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjögren’s syndrome. J Immunol. 2001;167:3610–8.

    PubMed  CAS  Google Scholar 

  82. Hansen A, Jacobi A, Pruss A, et al. Comparison of immunoglobulin heavy chain rearrangements between peripheral and glandular B cells in a patient with primary Sjögren’s syndrome. Scand J Immunol. 2003;57:470–9.

    PubMed  CAS  Google Scholar 

  83. Dorner T, Hansen A, Jacobi A, Lipsky PE. Immunoglobulin repertoire analysis provides new insights into the immunopathogenesis of Sjögren’s syndrome. Autoimmun Rev. 2002;1:119–24.

    PubMed  CAS  Google Scholar 

  84. Gottenberg JE, Aucouturier F, Goetz J, et al. Serum immunoglobulin free light chain assessment in rheumatoid arthritis and primary Sjögren’s syndrome. Ann Rheum Dis. 2007;66:23–7.

    PubMed  CAS  Google Scholar 

  85. Bahler DW, Swerdlow SH. Clonal salivary gland infiltrates associated with myoepithelial sialadenitis (Sjögren’s syndrome) begin as nonmalignant antigen-selected expansions. Blood 1998;91:1864–72.

    PubMed  CAS  Google Scholar 

  86. Speight PM, Cruchley A, Williams DM. Quantification of plasma cells in labial salivary glands: increased expression of IgM in Sjögren’s syndrome. J Oral Pathol Med. 1990;19:126–30.

    PubMed  CAS  Google Scholar 

  87. Espinosa A, Zhou W, Ek M, et al. The Sjögren’s syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. J Immunol. 2006;176:6277–85.

    PubMed  CAS  Google Scholar 

  88. Muller K, Manthorpe R, Permin H, Hoier-Madsen M, Oxholm P. Circulating IgM rheumatoid factors in patients with primary Sjögren’s syndrome. Scand J Rheumatol Suppl. 1988;75:265–8.

    PubMed  CAS  Google Scholar 

  89. Gottenberg JE, Mignot S, Nicaise-Rolland P, et al. Prevalence of anti-cyclic citrullinated peptide and anti-keratin antibodies in patients with primary Sjögren’s syndrome. Ann Rheum Dis. 2005;64:114–7.

    PubMed  CAS  Google Scholar 

  90. Haneji N, Nakamura T, Takio K, et al. Identification of alpha-fodrin as a candidate autoantigen in primary Sjögren’s syndrome. Science 1997;276:604–7.

    PubMed  CAS  Google Scholar 

  91. Watanabe T, Tsuchida T, Kanda N, Mori K, Hayashi Y, Tamaki K. Anti-alpha-fodrin antibodies in Sjögren syndrome and lupus erythematosus. Arch Dermatol. 1999;135:535–9.

    PubMed  CAS  Google Scholar 

  92. Asherson RA, Fei HM, Staub HL, Khamashta MA, Hughes GR, Fox RI. Antiphospholipid antibodies and HLA associations in primary Sjögren’s syndrome. Ann Rheum Dis. 1992;51:495–8.

    PubMed  CAS  Google Scholar 

  93. Cervera R, Garcia-Carrasco M, Font J, et al. Antiphospholipid antibodies in primary Sjögren’s syndrome: prevalence and clinical significance in a series of 80 patients. Clin Exp Rheumatol. 1997;15:361–5.

    PubMed  CAS  Google Scholar 

  94. Delaleu N, Jonsson R. Altered fractalkine cleavage results in an organ-specific 17 kDa fractalkine fragment in salivary glands of NOD mice. Arthritis Res Ther. 2008;10:114.

    PubMed  Google Scholar 

  95. Zandbelt MM, Vogelzangs J, Van De Putte LB, Van Venrooij WJ, Van Den Hoogen FH. Anti-alpha-fodrin antibodies do not add much to the diagnosis of Sjögren’s syndrome. Arthritis Res Ther. 2004;6:R33–R8.

    PubMed  CAS  Google Scholar 

  96. Jonsson MV, Szodoray P, Jellestad S, Jonsson R, Skarstein K. Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjögren’s syndrome. J Clin Immunol. 2005;25:189–201.

    PubMed  CAS  Google Scholar 

  97. Ioannidis JP, Vassiliou VA, Moutsopoulos HM. Long-term risk of mortality and lymphoproliferative disease and predictive classification of primary Sjögren’s syndrome. Arthritis Rheum. 2002;46:741–7.

    PubMed  Google Scholar 

  98. Takemura S, Braun A, Crowson C, et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol. 2001;167:1072–80.

    PubMed  CAS  Google Scholar 

  99. Armengol MP, Juan M, Lucas-Martin A, et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am J Pathol. 2001;159:861–73.

    PubMed  CAS  Google Scholar 

  100. Mazzucchelli L, Blaser A, Kappeler A, et al. BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J Clin Invest. 1999;104:R49–54.

    PubMed  CAS  Google Scholar 

  101. Humphreys-Beher MG, Brayer J, Yamachika S, Peck AB, Jonsson R. An alternative perspective to the immune response in autoimmune exocrinopathy: induction of functional quiescence rather than destructive autoaggression. Scand J Immunol. 1999;49:7–10.

    PubMed  CAS  Google Scholar 

  102. Delaleu N. The autonomy of different aspects of sjögren’s syndrome and their treatment in an experimental model. Bergen: University of Bergen; 2008.

    Google Scholar 

  103. Jonsson R, Kroneld U, Backman K, Magnusson B, Tarkowski A. Progression of sialadenitis in Sjögren’s syndrome. Br J Rheumatol. 1993;32:578–81.

    PubMed  CAS  Google Scholar 

  104. Dawson LJ, Field EA, Harmer AR, Smith PM. Acetylcholine-evoked calcium mobilization and ion channel activation in human labial gland acinar cells from patients with primary Sjögren’s syndrome. Clin Exp Immunol. 2001;124:480–5.

    PubMed  CAS  Google Scholar 

  105. Tsifetaki N, Kitsos G, Paschides CA, et al. Oral pilocarpine for the treatment of ocular symptoms in patients with Sjögren’s syndrome: a randomised 12 week controlled study. Ann Rheum Dis. 2003;62:1204–7.

    PubMed  CAS  Google Scholar 

  106. Dawson LJ, Fox PC, Smith PM. Sjögrens syndrome—the non-apoptotic model of glandular hypofunction. Rheumatology (Oxford) 2006;45:792–8.

    CAS  Google Scholar 

  107. Baum BJ, Dai Y, Hiramatsu Y, Horn VJ, Ambudkar IS. Signaling mechanisms that regulate saliva formation. Crit Rev Oral Biol Med. 1993;4:379–84.

    PubMed  CAS  Google Scholar 

  108. Luo W, Latchney LR, Culp DJ. G protein coupling to M1 and M3 muscarinic receptors in sublingual glands. Am J Physiol Cell Physiol. 2001;280:C884–96.

    PubMed  CAS  Google Scholar 

  109. Bymaster FP, McKinzie DL, Felder CC, Wess J. Use of M1–M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res. 2003;28:437–42.

    PubMed  CAS  Google Scholar 

  110. Yamada M, Miyakawa T, Duttaroy A, et al. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature. 2001;410:207–12.

    PubMed  CAS  Google Scholar 

  111. Robinson CP, Brayer J, Yamachika S, et al. Transfer of human serum IgG to nonobese diabetic Igmu null mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjögren’s syndrome. Proc Natl Acad Sci USA. 1998;95:7538–43.

    PubMed  CAS  Google Scholar 

  112. Dawson LJ, Stanbury J, Venn N, Hasdimir B, Rogers SN, Smith PM. Antimuscarinic antibodies in primary Sjögren’s syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cells. Arthritis Rheum. 2006;54:1165–73.

    PubMed  CAS  Google Scholar 

  113. Goldblatt F, Gordon TP, Waterman SA. Antibody-mediated gastrointestinal dysmotility in scleroderma. Gastroenterology 2002;123:1144–50.

    PubMed  CAS  Google Scholar 

  114. Waterman SA, Gordon TP, Rischmueller M. Inhibitory effects of muscarinic receptor autoantibodies on parasympathetic neurotransmission in Sjögren’s syndrome. Arthritis Rheum. 2000;43:1647–54.

    PubMed  CAS  Google Scholar 

  115. Gao J, Cha S, Jonsson R, Opalko J, Peck AB. Detection of anti-type 3 muscarinic acetylcholine receptor autoantibodies in the sera of Sjögren’s syndrome patients by use of a transfected cell line assay. Arthritis Rheum. 2004;50:2615–21.

    PubMed  CAS  Google Scholar 

  116. Marczinovits I, Kovacs L, Gyorgy A, et al. A peptide of human muscarinic acetylcholine receptor 3 is antigenic in primary Sjögren’s syndrome. J Autoimmun. 2005;24:47–54.

    PubMed  CAS  Google Scholar 

  117. Cavill D, Waterman SA, Gordon TP. Failure to detect antibodies to extracellular loop peptides of the muscarinic M3 receptor in primary Sjögren’s syndrome. J Rheumatol. 2002;29:1342–4.

    PubMed  Google Scholar 

  118. Dawson LJ, Allison HE, Stanbury J, Fitzgerald D, Smith PM. Putative anti-muscarinic antibodies cannot be detected in patients with primary Sjögren’s syndrome using conventional immunological approaches. Rheumatology (Oxford) 2004;43:1488–95.

    CAS  Google Scholar 

  119. Budd DC, McDonald J, Emsley N, Cain K, Tobin AB. The C-terminal tail of the M3-muscarinic receptor possesses anti-apoptotic properties. J Biol Chem. 2003;278:19565–73.

    PubMed  CAS  Google Scholar 

  120. Cha S, Singson E, Cornelius J, Yagna JP, Knot HJ, Peck AB. Muscarinic acetylcholine type-3 receptor desensitization due to chronic exposure to Sjögren’s syndrome-associated autoantibodies. J Rheumatol. 2006;33:296–306.

    PubMed  CAS  Google Scholar 

  121. Tayebati SK, El-Assouad D, Ricci A, Amenta F. Immunochemical and immunocytochemical characterization of cholinergic markers in human peripheral blood lymphocytes. J Neuroimmunol. 2002;132:147–55.

    PubMed  CAS  Google Scholar 

  122. Main C, Blennerhassett P, Collins SM. Human recombinant interleukin 1 beta suppresses acetylcholine release from rat myenteric plexus. Gastroenterology 1993;104:1648–54.

    PubMed  CAS  Google Scholar 

  123. Zoukhri D, Kublin CL. Impaired neurotransmitter release from lacrimal and salivary gland nerves of a murine model of Sjögren’s syndrome. Invest Ophthalmol Vis Sci. 2001;42:925–32.

    PubMed  CAS  Google Scholar 

  124. Dawson LJ, Christmas SE, Smith PM. An investigation of interactions between the immune system and stimulus-secretion coupling in mouse submandibular acinar cells. A possible mechanism to account for reduced salivary flow rates associated with the onset of Sjögren’s syndrome. Rheumatology (Oxford) 2000;39:1226–33.

    CAS  Google Scholar 

  125. Konttinen YT, Halinen S, Hanemaaijer R, et al. Matrix metalloproteinase (MMP)-9 type IV collagenase/gelatinase implicated in the pathogenesis of Sjögren’s syndrome. Matrix Biol. 1998;17:335–47.

    PubMed  CAS  Google Scholar 

  126. Beroukas D, Goodfellow R, Hiscock J, Jonsson R, Gordon TP, Waterman SA. Up-regulation of M3-muscarinic receptors in labial salivary gland acini in primary Sjögren’s syndrome. Lab Invest. 2002;82:203–10.

    PubMed  CAS  Google Scholar 

  127. Agre P, King LS, Yasui M, et al. Aquaporin water channels—from atomic structure to clinical medicine. J Physiol. 2002;542:3–16.

    PubMed  CAS  Google Scholar 

  128. Gresz V, Kwon TH, Hurley PT, et al. Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol. 2001;281:G247–54.

    PubMed  CAS  Google Scholar 

  129. Nguyen KH, Brayer J, Cha S, et al. Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in nod mice. Arthritis Rheum. 2000;43:2297–306.

    PubMed  CAS  Google Scholar 

  130. Krane CM, Melvin JE, Nguyen HV, et al. Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem. 2001;276:23413–20.

    PubMed  CAS  Google Scholar 

  131. Soyfoo MS, De Vriese C, Debaix H, et al. Modified aquaporin 5 expression and distribution in submandibular glands from NOD mice displaying autoimmune exocrinopathy. Arthritis Rheum. 2007;56:2566–74.

    PubMed  CAS  Google Scholar 

  132. Steinfeld S, Cogan E, King LS, Agre P, Kiss R, Delporte C. Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjögren’s syndrome patients. Lab Invest. 2001;81:143–8.

    PubMed  CAS  Google Scholar 

  133. Beroukas D, Hiscock J, Jonsson R, Waterman SA, Gordon TP. Subcellular distribution of aquaporin 5 in salivary glands in primary Sjögren’s syndrome. Lancet 2001;358:1875–6.

    PubMed  CAS  Google Scholar 

  134. Beroukas D, Hiscock J, Gannon BJ, Jonsson R, Gordon TP, Waterman SA. Selective down-regulation of aquaporin-1 in salivary glands in primary Sjögren’s syndrome. Lab Invest. 2002;82:1547–52.

    PubMed  CAS  Google Scholar 

  135. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol. 2006;24:571–606.

    PubMed  CAS  Google Scholar 

  136. Burnet FM. The Nobel Lectures in Immunology. The Nobel Prize for Physiology or Medicine, 1960. Immunologic recognition of self. Scand J Immunol. 1991;33:3–13.

    PubMed  CAS  Google Scholar 

  137. Nepom GT, Erlich H. MHC class-II molecules and autoimmunity. Annu Rev Immunol. 1991;9:493–525.

    PubMed  CAS  Google Scholar 

  138. Fernando MM, Stevens CR, Walsh EC, et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 2008;4:e1000024.

    PubMed  Google Scholar 

  139. Klareskog L, Ronnelid J, Lundberg K, Padyukov L, Alfredsson L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu Rev Immunol. 2008;26:651–75.

    PubMed  CAS  Google Scholar 

  140. Bolstad AI, Jonsson R. Genetic aspects of Sjögren’s syndrome. Arthritis Res. 2002;4:353–9.

    PubMed  Google Scholar 

  141. Harangi M, Kaminski WE, Fleck M, et al. Homozygosity for the 168His variant of the minor histocompatibility antigen HA-1 is associated with reduced risk of primary Sjögren’s syndrome. Eur J Immunol. 2005;35:305–17.

    PubMed  CAS  Google Scholar 

  142. Miceli-Richard C, Comets E, Loiseau P, Puechal X, Hachulla E, Mariette X. Association of an IRF5 gene functional polymorphism with Sjögren’s syndrome. Arthritis Rheum. 2007;56:3989–94.

    PubMed  CAS  Google Scholar 

  143. Bolstad AI, Wargelius A, Nakken B, Haga HJ, Jonsson R. Fas and Fas ligand gene polymorphisms in primary Sjögren’s syndrome. J Rheumatol. 2000;27:2397–405.

    PubMed  CAS  Google Scholar 

  144. Magnusson V, Nakken B, Bolstad AI, Alarcon-Riquelme ME. Cytokine polymorphisms in systemic lupus erythematosus and Sjögren’s syndrome. Scand J Immunol. 2001;54:55–61.

    PubMed  CAS  Google Scholar 

  145. Gottenberg JE, Loiseau P, Azarian M, et al. CTLA-4 +49A/G and CT60 gene polymorphisms in primary Sjögren syndrome. Arthritis Res Ther. 2007;9:R24.

    PubMed  Google Scholar 

  146. Miceli-Richard C, Dieude P, Hachulla E, Puechal X, Cornelis F, Mariette X. Tumour necrosis factor receptor 2 (TNFRSF1B) association study in Sjögren’s syndrome. Ann Rheum Dis. 2007;66:1684–5.

    PubMed  Google Scholar 

  147. Kahlmann D, Davalos-Misslitz AC, Ohl L, Stanke F, Witte T, Forster R. Genetic variants of chemokine receptor CCR7 in patients with systemic lupus erythematosus, Sjögren’s syndrome and systemic sclerosis. BMC Genet. 2007;8:33.

    PubMed  Google Scholar 

  148. Moutsopoulos HM, Papadopoulos GK. Possible viral implication in the pathogenesis of Sjögren’s syndrome. Eur J Med. 1992;1:219–23.

    PubMed  CAS  Google Scholar 

  149. Blank M, Barzilai O, Shoenfeld Y. Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol. 2007;32:111–8.

    PubMed  Google Scholar 

  150. Pflugfelder SC, Crouse CA, Monroy D, Yen M, Rowe M, Atherton SS. Epstein–Barr virus and the lacrimal gland pathology of Sjögren’s syndrome. Am J Pathol. 1993;143:49–64.

    PubMed  CAS  Google Scholar 

  151. Green JE, Hinrichs SH, Vogel J, Jay G. Exocrinopathy resembling Sjögren’s syndrome in HTLV-1 tax transgenic mice. Nature 1989;341:72–4.

    PubMed  CAS  Google Scholar 

  152. Haddad J, Deny P, Munz-Gotheil C, et al. Lymphocytic sialadenitis of Sjögren’s syndrome associated with chronic hepatitis C virus liver disease. Lancet 1992;339:321–3.

    PubMed  CAS  Google Scholar 

  153. Fleck M, Kern ER, Zhou T, Lang B, Mountz JD. Murine cytomegalovirus induces a Sjögren’s syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum. 1998;41:2175–84.

    PubMed  CAS  Google Scholar 

  154. Fleck M, Zhang HG, Kern ER, Hsu HC, Muller-Ladner U, Mountz JD. Treatment of chronic sialadenitis in a murine model of Sjögren’s syndrome by local fasL gene transfer. Arthritis Rheum. 2001;44:964–73.

    PubMed  CAS  Google Scholar 

  155. Triantafyllopoulou A, Tapinos N, Moutsopoulos HM. Evidence for coxsackievirus infection in primary Sjögren’s syndrome. Arthritis Rheum. 2004;50:2897–902.

    PubMed  CAS  Google Scholar 

  156. Gottenberg JE, Pallier C, Ittah M, et al. Failure to confirm coxsackievirus infection in primary Sjögren’s syndrome. Arthritis Rheum. 2006;54:2026–8.

    PubMed  CAS  Google Scholar 

  157. Hjelmervik TO, Lindqvist AK, Petersen K, et al. The influence of the NOD Nss1/Idd5 loci on sialadenitis and gene expression in salivary glands of congenic mice. Arthritis Res Ther. 2007;9:R99.

    PubMed  Google Scholar 

  158. Killedar SJ, Eckenrode SE, McIndoe RA, et al. Early pathogenic events associated with Sjögren’s syndrome (SjS)-like disease of the NOD mouse using microarray analysis. Lab Invest. 2006;86:1243–60.

    PubMed  CAS  Google Scholar 

  159. Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol. 2005;23:307–36.

    PubMed  CAS  Google Scholar 

  160. Matzinger P. Friendly and dangerous signals: is the tissue in control? Nat Immunol. 2007;8:11–3.

    PubMed  CAS  Google Scholar 

  161. Matzinger P. The danger model: a renewed sense of self. Science 2002;296:301–5.

    PubMed  CAS  Google Scholar 

  162. Konttinen YT, Kasna-Ronkainen L. Sjögren’s syndrome: viewpoint on pathogenesis. One of the reasons I was never asked to write a textbook chapter on it. Scand J Rheumatol. Suppl. 2002;116:15–22.

    Google Scholar 

  163. Ohlsson M, Jonsson R, Brokstad KA. Subcellular redistribution and surface exposure of the Ro52, Ro60 and La48 autoantigens during apoptosis in human ductal epithelial cells: a possible mechanism in the pathogenesis of Sjögren’s syndrome. Scand J Immunol. 2002;56:456–69.

    PubMed  CAS  Google Scholar 

  164. Rosen A, Casciola-Rosen L. Altered autoantigen structure in Sjögren’s syndrome: implications for the pathogenesis of autoimmune tissue damage. Crit Rev Oral Biol Med. 2004;15:156–64.

    PubMed  CAS  Google Scholar 

  165. Nagaraju K, Cox A, Casciola-Rosen L, Rosen A. Novel fragments of the Sjögren’s syndrome autoantigens alpha-fodrin and type 3 muscarinic acetylcholine receptor generated during cytotoxic lymphocyte granule-induced cell death. Arthritis Rheum. 2001;44:2376–86.

    PubMed  CAS  Google Scholar 

  166. Lovgren T, Eloranta ML, Kastner B, Wahren-Herlenius M, Alm GV, Ronnblom L. Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjögren’s syndrome autoantigen-associated RNA. Arthritis Rheum. 2006;54:1917–27.

    PubMed  Google Scholar 

  167. Nordmark G, Alm GV, Ronnblom L. Mechanisms of disease: primary Sjögren’s syndrome and the type I interferon system. Nat Clin Pract Rheumatol. 2006;2:262–9.

    PubMed  CAS  Google Scholar 

  168. Scofield RH, Asfa S, Obeso D, Jonsson R, Kurien BT. Immunization with short peptides from the 60-kDa Ro antigen recapitulates the serological and pathological findings as well as the salivary gland dysfunction of Sjögren’s syndrome. J Immunol. 2005;175:8409–14.

    PubMed  CAS  Google Scholar 

  169. Kurien BT, Asfa S, Li C, Dorri Y, Jonsson R, Scofield RH. Induction of oral tolerance in experimental Sjögren’s syndrome autoimmunity. Scand J Immunol. 2005;61:418–25.

    PubMed  CAS  Google Scholar 

  170. Topfer F, Gordon T, McCluskey J. Intra- and intermolecular spreading of autoimmunity involving the nuclear self-antigens La (SS-B) and Ro (SS-A). Proc Natl Acad Sci USA. 1995;92:875–9.

    PubMed  CAS  Google Scholar 

  171. Tseng CE, Chan EK, Miranda E, Gross M, Di Donato F, Buyon JP. The 52-kd protein as a target of intermolecular spreading of the immune response to components of the SS-A/Ro-SS-B/La complex. Arthritis Rheum. 1997;40:936–44.

    PubMed  CAS  Google Scholar 

  172. Keech CL, Gordon TP, McCluskey J. The immune response to 52-kDa Ro and 60-kDa Ro is linked in experimental autoimmunity. J Immunol. 1996;157:3694–9.

    PubMed  CAS  Google Scholar 

  173. Reynolds P, Gordon TP, Purcell AW, Jackson DC, McCluskey J. Hierarchical self-tolerance to T cell determinants within the ubiquitous nuclear self-antigen La (SS-B) permits induction of systemic autoimmunity in normal mice. J Exp Med. 1996;184:1857–70.

    PubMed  CAS  Google Scholar 

  174. Masago R, Aiba-Masago S, Talal N, et al. Elevated proapoptotic Bax and caspase 3 activation in the NOD.scid model of Sjögren’s syndrome. Arthritis Rheum. 2001;44:693–702.

    PubMed  CAS  Google Scholar 

  175. Li H, Dai M, Zhuang Y. A T cell intrinsic role of Id3 in a mouse model for primary Sjögren’s syndrome. Immunity. 2004;21:551–60.

    PubMed  CAS  Google Scholar 

  176. Hayakawa I, Tedder TF, Zhuang Y. B-lymphocyte depletion ameliorates Sjögren’s syndrome in Id3 knockout mice. Immunology 2007;122:73–9.

    PubMed  CAS  Google Scholar 

  177. Sellam J, Miceli-Richard C, Gottenberg JE, et al. Is inhibitor of differentiation 3 involved in human primary Sjögren’s syndrome? Rheumatology (Oxford) 2008;47:437–41.

    CAS  Google Scholar 

  178. Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7:875–88.

    PubMed  CAS  Google Scholar 

  179. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52.

    PubMed  CAS  Google Scholar 

  180. Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol. 2007;7:622–32.

    PubMed  CAS  Google Scholar 

  181. Zanin-Zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR. Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J Clin Invest. 2006;116:2022–32.

    PubMed  CAS  Google Scholar 

  182. Kulkarni AB, Huh CG, Becker D, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA. 1993;90:770–4.

    PubMed  CAS  Google Scholar 

  183. Kok MR, Yamano S, Lodde BM, et al. Local adeno-associated virus-mediated interleukin 10 gene transfer has disease-modifying effects in a murine model of Sjögren’s syndrome. Hum Gene Ther. 2003;14:1605–18.

    PubMed  CAS  Google Scholar 

  184. Saito I, Haruta K, Shimuta M, et al. Fas ligand-mediated exocrinopathy resembling Sjögren’s syndrome in mice transgenic for IL-10. J Immunol. 1999;162:2488–94.

    PubMed  CAS  Google Scholar 

  185. Salam MA, Matin K, Matsumoto N, Tsuha Y, Hanada N, Senpuku H. E2f1 mutation induces early onset of diabetes and Sjögren’s syndrome in nonobese diabetic mice. J Immunol. 2004;173:4908–18.

    PubMed  CAS  Google Scholar 

  186. Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201:723–35.

    PubMed  CAS  Google Scholar 

  187. Sharma R, Zheng L, Guo X, Fu SM, Ju ST, Jarjour WN. Novel animal models for Sjögren’s syndrome: expression and transfer of salivary gland dysfunction from regulatory T cell-deficient mice. J Autoimmun. 2006;27:289–96.

    PubMed  CAS  Google Scholar 

  188. Oak JS, Deane JA, Kharas MG, et al. Sjögren’s syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-kinase. Proc Natl Acad Sci USA. 2006;103:16882–7.

    PubMed  CAS  Google Scholar 

  189. Merbl Y, Zucker-Toledano M, Quintana FJ, Cohen IR. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest. 2007;117:712–8.

    PubMed  CAS  Google Scholar 

  190. Avrameas S, Ternynck T, Tsonis IA, Lymberi P. Naturally occurring B-cell autoreactivity: a critical overview. J Autoimmun. 2007;29:213–8.

    PubMed  CAS  Google Scholar 

  191. Cohen IR. Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetes. Annu Rev Immunol. 1991;9:567–89.

    PubMed  CAS  Google Scholar 

  192. Cohen IR. The cognitive paradigm and the immunological homunculus. Immunol Today. 1992;13:490–4.

    PubMed  CAS  Google Scholar 

  193. Satpute SR, Durai M, Moudgil KD. Antigen-specific tolerogenic and immunomodulatory strategies for the treatment of autoimmune arthritis. Semin Arthritis Rheum. 2008;38(3):195–207.

    PubMed  CAS  Google Scholar 

  194. van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol. 2005;5:318–30.

    PubMed  Google Scholar 

  195. Chatenoud L. Immune therapies of autoimmune diseases: are we approaching a real cure? Curr Opin Immunol. 2006;18:710–7.

    PubMed  CAS  Google Scholar 

  196. Curtis JR, Xi J, Patkar N, Xie A, Saag KG, Martin C. Drug-specific and time-dependent risks of bacterial infection among patients with rheumatoid arthritis who were exposed to tumor necrosis factor alpha antagonists. Arthritis Rheum. 2007;56:4226–7.

    PubMed  Google Scholar 

  197. Mackay F, Schneider P, Rennert P, Browning J. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64.

    PubMed  CAS  Google Scholar 

  198. Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest. 2002;109:59–68.

    PubMed  CAS  Google Scholar 

  199. Fletcher CA, Sutherland AP, Groom JR, et al. Development of nephritis but not sialadenitis in autoimmune-prone BAFF transgenic mice lacking marginal zone B cells. Eur J Immunol. 2006;36:2504–14.

    PubMed  CAS  Google Scholar 

  200. Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis. 2003;62:168–71.

    PubMed  CAS  Google Scholar 

  201. Daridon C, Devauchelle V, Hutin P, et al. Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum. 2007;56:1134–44.

    PubMed  CAS  Google Scholar 

  202. Ittah M, Miceli-Richard C, Eric Gottenberg J, et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren’s syndrome. Arthritis Res Ther. 2006;8:R51.

    PubMed  Google Scholar 

  203. Szodoray P, Jellestad S, Teague MO, Jonsson R. Attenuated apoptosis of B cell activating factor-expressing cells in primary Sjögren’s syndrome. Lab Invest. 2003;83:357–65.

    PubMed  CAS  Google Scholar 

  204. Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg JE, Mariette X. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann Rheum Dis. 2007;66:700–3.

    PubMed  CAS  Google Scholar 

  205. Devauchelle-Pensec V, Pennec Y, Morvan J, et al. Improvement of Sjögren’s syndrome after two infusions of rituximab (anti-CD20). Arthritis Rheum. 2007;57:310–7.

    PubMed  CAS  Google Scholar 

  206. Laine M, Porola P, Udby L, et al. Low salivary dehydroepiandrosterone and androgen-regulated cysteine-rich secretory protein 3 levels in Sjögren’s syndrome. Arthritis Rheum. 2007;56:2575–84.

    PubMed  CAS  Google Scholar 

  207. Shim GJ, Warner M, Kim HJ, et al. Aromatase-deficient mice spontaneously develop a lymphoproliferative autoimmune disease resembling Sjögren’s syndrome. Proc Natl Acad Sci USA. 2004;101:12628–33.

    PubMed  CAS  Google Scholar 

  208. Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B. Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest. 2002;109:1625–33.

    PubMed  CAS  Google Scholar 

  209. Grimaldi CM, Michael DJ, Diamond B. Cutting edge: expansion and activation of a population of autoreactive marginal zone B cells in a model of estrogen-induced lupus. J Immunol. 2001;167:1886–90.

    PubMed  CAS  Google Scholar 

  210. Bynoe MS, Grimaldi CM, Diamond B. Estrogen up-regulates Bcl-2 and blocks tolerance induction of naive B cells. Proc Natl Acad Sci USA. 2000;97:2703–8.

    PubMed  CAS  Google Scholar 

  211. Kuroki M, Okayama A, Nakamura S, et al. Detection of maternal–fetal microchimerism in the inflammatory lesions of patients with Sjögren’s syndrome. Ann Rheum Dis. 2002;61:1041–6.

    PubMed  CAS  Google Scholar 

  212. Endo Y, Negishi I, Ishikawa O. Possible contribution of microchimerism to the pathogenesis of Sjögren’s syndrome. Rheumatology (Oxford) 2002;41:490–5.

    CAS  Google Scholar 

  213. Aractingi S, Sibilia J, Meignin V, et al. Presence of microchimerism in labial salivary glands in systemic sclerosis but not in Sjögren’s syndrome. Arthritis Rheum. 2002;46:1039–43.

    PubMed  Google Scholar 

  214. Devauchelle-Pensec V, Cagnard N, Pers JO, Youinou P, Saraux A, Chiocchia G. Gene expression profile in the salivary glands of primary Sjögren’s syndrome patients before and after treatment with rituximab. Arthritis Rheum. 2010;62:2262–71.

    PubMed  CAS  Google Scholar 

  215. Alevizos I, Alexander S, Turner RJ, Illei GG. MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjögren’s syndrome. Arthritis Rheum. 2011;63:535–44.

    PubMed  CAS  Google Scholar 

  216. Gonzalez S, Aguilera S, Alliende C, et al. Alterations in type I-hemidesmosome components suggest epigenetic control in salivary glands from Sjögren’s syndrome patients. Arthritis Rheum. 2011.

    Google Scholar 

  217. Ewert P, Aguilera S, Alliende C, et al. Disruption of tight junction structure in salivary glands from Sjögren’s syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum. 2010;62:1280–9.

    PubMed  CAS  Google Scholar 

  218. Delaleu N, Nguyen CQ, Peck AB, Jonsson R. Sjögren’s syndrome: studying the disease in mice. Arthritis Res Ther. 2011;13:217.

    Google Scholar 

  219. Garantziotis S, Hollingsworth JW, Zaas AK, Schwartz DA. The effect of toll-like receptors and toll-like receptor genetics in human disease. Annu Rev Med. 2008;59:343–59.

    PubMed  CAS  Google Scholar 

  220. Mavragani CP, Crow MK. Activation of the type I interferon pathway in primary Sjögren’s syndrome. J Autoimmun. 2010;35:225–31.

    PubMed  CAS  Google Scholar 

  221. Higgs R, Lazzari E, Wynne C, et al. Self protection from anti-viral responses—Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-like receptors. PLoS One 2010;5:e11776.

    PubMed  Google Scholar 

  222. Ronnblom L, Alm GV, Eloranta ML. The type I interferon system in the development of lupus. Semin Immunol. 2011;23:113–21.

    Google Scholar 

  223. Miceli-Richard C, Gestermann N, Ittah M, et al. The CGGGG insertion/deletion polymorphism of the IRF5 promoter is a strong risk factor for primary Sjögren’s syndrome. Arthritis Rheum. 2009;60:1991–7.

    PubMed  CAS  Google Scholar 

  224. Nordmark G, Kristjansdottir G, Theander E, et al. Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjögren’ syndrome. Genes Immun. 2011;12:100–9.

    Google Scholar 

  225. Vogelsang P, Brun JG, Oijordsbakken G, Skarstein K, Jonsson R, Appel S. Levels of plasmacytoid dendritic cells and type-2 myeloid dendritic cells are reduced in peripheral blood of patients with primary Sjögren’s syndrome. Ann Rheum Dis. 2010;69:1235–8.

    PubMed  CAS  Google Scholar 

  226. Katsifis GE, Rekka S, Moutsopoulos NM, Pillemer S, Wahl SM. Systemic and local interleukin-17 and linked cytokines associated with Sjögren’s syndrome immunopathogenesis. Am J Pathol. 2009;175:1167–77.

    PubMed  CAS  Google Scholar 

  227. Sakai A, Sugawara Y, Kuroishi T, Sasano T, Sugawara S. Identification of IL-18 and Th17 cells in salivary glands of patients with Sjögren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol. 2008;181:2898–906.

    PubMed  CAS  Google Scholar 

  228. Szyszko EA, Brokstad KA, Oijordsbakken G, Jonsson MV, Jonsson R, Skarstein K. Salivary glands of primary Sjögren’s syndrome patients express factors vital for plasma cell survival. Arthritis Res Ther. 2011;13:R2.

    PubMed  Google Scholar 

  229. Delaleu N, Jonsson MV, Jonsson R. Disease mechanisms of Sjögren’s syndrome. Drug Discov Today: Dis Mech. 2004;1:329–36.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. B. Delaleu-Justitz for careful revision of the manuscript. Financial support: The European Union (BMH4-CT96-0595; BMH4-CT98-3489; QLK2-1999-51079; QLK2-CT-2001-30115; MEST-CT-2004-514483, MEIF-CT-2007-041083), The Research Council of Norway’s GLOBVAC program, The Strategic Research Program at Helse Bergen (regional health authorities of Western Norway), and The Broegelmann Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Jonsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Delaleu, N., Manoussakis, M.N., Moutsopoulos, H.M., Jonsson, R. (2011). Etiology and Pathogenesis of Sjögren’s Syndrome with Special Emphasis on the Salivary Glands. In: Fox, R., Fox, C. (eds) Sjögren’s Syndrome. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-957-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-957-4_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-956-7

  • Online ISBN: 978-1-60327-957-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics