Skip to main content

Transplantation of Oligodendrocyte Progenitor Cells in Animal Models of Leukodystrophies

  • Protocol
  • First Online:
Neural Cell Transplantation

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 549))

Summary

Leukodystrophies represent a wide variety of hereditary disorders of the white matter in the central nervous system, where the patients, mostly in infancy or childhood, suffer from progressive and often fatal neurological symptoms due to either a delay or lack of myelin development or loss of myelin. As only supportive therapies are available for the majority of the leukodystrophies, replacing genetically defective oligodendrocytes with intact oligodendrocytes by transplantation has a potential as a curative therapy. Animal models of leukodystrophies have been valuable in developing effective strategies of myelin repair in human diseases. This chapter discusses the animal models of leukodystrophies and describes methods for (a) derivation of mouse oligodendrocyte progenitor cells (OPCs) in vitro as a source of donor myelin-forming cells and (b) transplantation of OPCs into the brain and spinal cord of mouse models of leukodystrophies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodes ME, Pratt VM, Dlouhy SR. Genetics of Pelizaeus–Merzbacher disease. Dev Neurosci 1993;15(6):383–94.

    Article  PubMed  CAS  Google Scholar 

  2. Mimault C, Giraud G, Courtois V, et al. Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus–Merzbacher Disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The Clinical European Network on Brain Dysmyelinating Disease. Am J Hum Genet 1999;65(2):360–9.

    Article  PubMed  CAS  Google Scholar 

  3. Cailloux F, Gauthier-Barichard F, Mimault C, et al. Genotype–phenotype correlation in inherited brain myelination defects due to proteolipid protein gene mutations. Clinical European Network on Brain Dysmyelina-ting Disease. Eur J Hum Genet 2000;8(11):837–45.

    Article  PubMed  CAS  Google Scholar 

  4. Sistermans EA, de Coo RF, De Wijs IJ, Van Oost BA. Duplication of the proteolipid protein gene is the major cause of Pelizaeus–Merzbacher disease. Neurology 1998;50(6):1749–54.

    Article  PubMed  CAS  Google Scholar 

  5. Ellis D, Malcolm S. Proteolipid protein gene dosage effect in Pelizaeus–Merzbacher disease. Nat Genet 1994;6(4):333–4.

    Article  PubMed  CAS  Google Scholar 

  6. Wenger DA, Rafi MA, Luzi P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat 1997;10(4):268–79.

    Article  PubMed  CAS  Google Scholar 

  7. Aubourg P, Blanche S, Jambaque I, et al. Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N Engl J Med 1990;322(26):1860–6.

    Article  PubMed  CAS  Google Scholar 

  8. Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbes disease. N Engl J Med 2005;352(20):2069–81.

    Article  PubMed  CAS  Google Scholar 

  9. Lu JF, Lawler AM, Watkins PA, et al. A mouse model for X-linked adrenoleukodystrophy. Proc Natl Acad Sci USA 1997;94(17):9366–71.

    Article  PubMed  CAS  Google Scholar 

  10. Forss-Petter S, Werner H, Berger J, et al. Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res 1997;50(5):829–43.

    Article  PubMed  CAS  Google Scholar 

  11. Pujol A, Hindelang C, Callizot N, Bartsch U, Schachner M, Mandel JL. Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum Mol Genet 2002;11(5):499–505.

    Article  PubMed  CAS  Google Scholar 

  12. Hess B, Saftig P, Hartmann D, et al. Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci USA 1996;93(25):14821–6.

    Article  PubMed  CAS  Google Scholar 

  13. Biffi A, Capotondo A, Fasano S, et al Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 2006;116(11):3070–82.

    Article  PubMed  CAS  Google Scholar 

  14. Duncan ID, Hammang JP, Jackson KF, Wood PM, Bunge RP, Langford L. Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat. J Neurocytol 1988;17(3):351–60.

    Article  PubMed  CAS  Google Scholar 

  15. Tontsch U, Archer DR, Dubois-Dalcq M, Duncan ID. Transplantation of an oligodendrocyte cell line leading to extensive myelination. Proc Natl Acad Sci USA 1994;91(24):11616–20.

    Article  PubMed  CAS  Google Scholar 

  16. Brustle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 1999;285(5428):754–6.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenbluth J, Hasegawa M, Schiff R. Myelin formation in myelin-deficient rat spinal cord following transplantation of normal fetal spinal cord. Neurosci Lett 1989;97(1–2):35–40.

    Article  PubMed  CAS  Google Scholar 

  18. Archer DR, Cuddon PA, Lipsitz D, Duncan ID. Myelination of the canine central nervous system by glial cell transplantation: a model for repair of human myelin disease. Nat Med 1997;3(1):54–9.

    Article  PubMed  CAS  Google Scholar 

  19. Griffiths IR, Duncan ID, McCulloch M. Shaking pups: a disorder of central myelination in the spaniel dog. II. Ultrastructural observations on the white matter of the cervical spinal cord. J Neurocytol 1981;10(5):847–58.

    Article  PubMed  CAS  Google Scholar 

  20. Gumpel M, Baumann N, Raoul M, Jacque C. Survival and differentiation of oligodendrocytes from neural tissue transplanted into new-born mouse brain. Neurosci Lett 1983;37(3):307–11.

    Article  PubMed  CAS  Google Scholar 

  21. Baron-Van Evercooren A, Avellana-Adalid V, Ben Younes-Chennoufi A, Gansmuller A, Nait-Oumesmar B, Vignais L. Cell–cell interactions during the migration of myelin-forming cells transplanted in the demyelinated spinal cord. Glia 1996;16(2):147–64.

    Article  PubMed  CAS  Google Scholar 

  22. Windrem MS, Nunes MC, Rashbaum WK, et al. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 2004;10(1):93–7.

    Article  PubMed  CAS  Google Scholar 

  23. Kondo Y, Wenger DA, Gallo V, Duncan ID. Galactocerebrosidase-deficient oligodendrocytes maintain stable central myelin by exogenous replacement of the missing enzyme in mice. Proc Natl Acad Sci USA 2005;102(51):18670–5.

    Article  PubMed  CAS  Google Scholar 

  24. Yuan X, Chittajallu R, Belachew S, Anderson S, McBain CJ, Gallo V. Expression of the green fluorescent protein in the oligodendrocyte lineage: a transgenic mouse for developmental and physiological studies. J Neurosci Res 2002;70(4):529–45.

    Article  PubMed  CAS  Google Scholar 

  25. Avellana-Adalid V, Nait-Oumesmar B, Lachapelle F, Baron-Van Evercooren A. Expansion of rat oligodendrocyte progenitors into proliferative “oligospheres” that retain differentiation potential. J Neurosci Res 1996;45(5):558–70.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang SC, Lundberg C, Lipsitz D, OConnor LT, Duncan ID. Generation of oligodendroglial progenitors from neural stem cells. J Neurocytol 1998;27(7):475–89.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang SC, Lipsitz D, Duncan ID. Self-renewing canine oligodendroglial progenitor expanded as oligospheres. J Neurosci Res 1998;54(2):181–90.

    Article  PubMed  CAS  Google Scholar 

  28. Learish RD, Brustle O, Zhang SC, Duncan ID. Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutant results in widespread formation of myelin. Ann Neurol 1999;46(5):716–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work cited from our laboratory is currently supported by NMSS grant TR3761 and NIH NS055816. We acknowledge with gratitude the support of the Elisabeth Elser Doolittle Charitable Trust and the Oscar Rennebohm Foundation. We are grateful for past efforts of many previous colleagues.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kondo, Y., Duncan, I.D. (2009). Transplantation of Oligodendrocyte Progenitor Cells in Animal Models of Leukodystrophies. In: Gordon, D., Scolding, N. (eds) Neural Cell Transplantation. Methods in Molecular Biology™, vol 549. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-931-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-931-4_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-930-7

  • Online ISBN: 978-1-60327-931-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics