Skip to main content

Animal Models of Neurodegenerative Diseases

  • Protocol
  • First Online:
Neural Cell Transplantation

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 549))

Summary

Animal models of neurodegenerative disease are excellent tools for studying pathogenesis and therapies including cellular transplantation. In this chapter, we describe different models of Huntington’s disease and Parkinson’s disease, stereotactic surgery (used in creation of lesion models and transplantation) and finally transplantation studies in these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bates, G., Harper, P., and Jones, L. (2002) Huntington’s Disease. 3rd edition, Oxford University Press, Oxford.

    Google Scholar 

  2. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes The Huntington’s Disease Collaborative Research Group Cell 72, 971–983.

    Google Scholar 

  3. Foltynie, T., Brayne, C., and Barker, R.A. (2002) The heterogeneity of idiopathic Parkinson’s disease J. Neurol. 249, 138–145.

    Article  PubMed  Google Scholar 

  4. Fearnley, J.M. and Lees, A.J. (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity Brain 114, 2283–2301.

    Article  PubMed  Google Scholar 

  5. Coyle, J.T. and Schwarcz, R. (1976) Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea Nature 263, 244–246.

    Article  PubMed  CAS  Google Scholar 

  6. Beal, M.F., Ferrante, R.J., Swartz, K.J., and Kowall, N.W. (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease J. Neurosci. 11, 1649–1659.

    PubMed  CAS  Google Scholar 

  7. Brouillet, E., Jacquard, C., Bizat, N., and Blum, D. (2005) 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease J. Neurochem. 95, 1521–1540.

    Article  PubMed  CAS  Google Scholar 

  8. Goebel, H.H., Heipertz, R., Scholz, W., Iqbal, K., and Tellez-Nagel, I. (1978) Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies Neurology 28, 23–31.

    Article  PubMed  CAS  Google Scholar 

  9. Jenkins, B.G., Koroshetz, W.J., Beal, M.F., and Rosen, B.R. (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy Neurology 43, 2689–2695.

    Article  PubMed  CAS  Google Scholar 

  10. Tabrizi, S.J., Workman, J., Hart, P.E., Mangiarini, L., Mahal, A., Bates, G., et al (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse Ann. Neurol. 47, 80–86.

    Article  PubMed  CAS  Google Scholar 

  11. Guidetti, P., Charles, V., Chen, E.Y., Reddy, P.H., Kordower, J.H., Whetsell, W.O., Jr., et al (2001) Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production Exp. Neurol. 169, 340–350.

    Article  PubMed  CAS  Google Scholar 

  12. Brennan, W.A., Jr., Bird, E.D., and Aprille, J.R. (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain J. Neurochem. 44, 1948–1950.

    Article  PubMed  CAS  Google Scholar 

  13. Hansson, O., Petersen, A., Leist, M., Nicotera, P., Castilho, R.F., and Brundin, P. (1999) Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity Proc. Natl Acad. Sci. USA 96, 8727–8732.

    Article  PubMed  CAS  Google Scholar 

  14. Phillips, W., Morton, A.J., and Barker, R.A. (2005) Abnormalities of neurogenesis in the R6/2 mouse model of Huntington’s disease are attributable to the in vivo microenvironment J. Neurosci. 25, 11564–11576.

    Article  PubMed  CAS  Google Scholar 

  15. Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C. et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice Cell 87, 493–506.

    Article  PubMed  CAS  Google Scholar 

  16. Pavese, N., Andrews, T.C., Brooks, D.J., Ho, A.K., Rosser, A.E., Barker, R.A., et al (2003) Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study Brain 126, 1127–1135.

    Article  PubMed  Google Scholar 

  17. Rosas, H.D., Koroshetz, W.J., Chen, Y.I., Skeuse, C., Vangel, M., Cudkowicz, M.E., et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis Neurology 60, 1615–1620.

    Article  PubMed  CAS  Google Scholar 

  18. Telenius, H., Kremer, H.P., Theilmann, J., Andrew, S.E., Almqvist, E., Anvret, M., et al (1993) Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent Hum. Mol. Genet. 2, 1535–1540.

    Article  PubMed  CAS  Google Scholar 

  19. Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997) Genetic influence on neurogenesis in the dentate gyrus of adult mice Proc. Natl Acad. Sci. USA 94, 10409–10414.

    Article  PubMed  CAS  Google Scholar 

  20. Shuttleworth, C.W. and Connor, J.A. (2001) Strain-dependent differences in calcium signaling predict excitotoxicity in murine hippocampal neurons J. Neurosci. 21, 4225–4236.

    PubMed  CAS  Google Scholar 

  21. Hockly, E., Cordery, P.M., Woodman, B., Mahal, A., Van, D.A., Blakemore, C., et al (2002) Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice Ann. Neurol. 51, 235–242.

    Article  PubMed  Google Scholar 

  22. MacDonald, M.E., Barnes, G., Srinidhi, J., Duyao, M.P., Ambrose, C.M., Myers, R.H., et al (1993) Gametic but not somatic instability of CAG repeat length in Huntington’s disease J. Med. Genet. 30, 982–986.

    Article  PubMed  CAS  Google Scholar 

  23. Rubinsztein, D.C., Leggo, J., Coles, R., Almqvist, E., Biancalana, V., Cassiman, J.J., et al (1996) Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats Am. J. Hum. Genet. 59, 16–22.

    PubMed  CAS  Google Scholar 

  24. Snell, R.G., MacMillan, J.C., Cheadle, J.P., Fenton, I., Lazarou, L.P., Davies, P., et al (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease Nat. Genet. 4, 393–397.

    Article  PubMed  CAS  Google Scholar 

  25. Carter, R.J., Hunt, M.J., and Morton, A.J. (2000) Environmental stimulation increases survival in mice transgenic for exon 1 of the Huntington’s disease gene Mov. Disord. 15, 925–937.

    Article  PubMed  CAS  Google Scholar 

  26. Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997) More hippocampal neurons in adult mice living in an enriched environment Nature 386, 493–495.

    Article  PubMed  CAS  Google Scholar 

  27. Menalled, L.B. (2005) Knock-in mouse models of Huntington’s disease NeuroRx 2, 465–470.

    Article  PubMed  Google Scholar 

  28. Hamel, E., Goetz, I.E., and Roberts, E. (1981) Glutamic acid decarboxylase and gamma-aminobutyric acid in Huntington’s disease fibroblasts and other cultured cells, determined by a [3H]muscimol radioreceptor assay J. Neurochem. 37, 1032–1038.

    Article  PubMed  CAS  Google Scholar 

  29. Saudou, F., Finkbeiner, S., Devys, D., and Greenberg, M.E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions Cell 95, 55–66.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson, G.R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P.W., et al (1998) Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons Neuron 21, 633–642.

    Article  PubMed  CAS  Google Scholar 

  31. Faber, P.W., Alter, J.R., MacDonald, M.E., and Hart, A.C. (1999) Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron Proc. Natl Acad. Sci. USA 96, 179–184.

    Article  PubMed  CAS  Google Scholar 

  32. Karlovich, C.A., John, R.M., Ramirez, L., Stainier, D.Y., and Myers, R.M. (1998) Characterization of the Huntington’s disease (HD) gene homologue in the zebrafish Danio rerio Gene 217, 117–125.

    Article  PubMed  CAS  Google Scholar 

  33. Miller, V.M., Nelson, R.F., Gouvion, C.M., Williams, A., Rodriguez-Lebron, E., Harper, S.Q., et al (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo J. Neurosci. 25, 9152–9161.

    Article  PubMed  CAS  Google Scholar 

  34. Morton, A.J. and Leavens, W. (2000) Mice transgenic for the human Huntington’s disease mutation have reduced sensitivity to kainic acid toxicity Brain Res. Bull. 52, 51–59.

    Article  PubMed  CAS  Google Scholar 

  35. Hickey, M.A. and Morton, A.J. (2000) Mice transgenic for the Huntington’s disease mutation are resistant to chronic 3-nitropropionic acid-induced striatal toxicity J. Neurochem. 75, 2163–2171.

    Article  PubMed  CAS  Google Scholar 

  36. Petersen, A., Chase, K., Puschban, Z., DiFiglia, M., Brundin, P., and Aronin, N. (2002) Maintenance of susceptibility to neurodegeneration following intrastriatal injections of quinolinic acid in a new transgenic mouse model of Huntington’s disease Exp. Neurol. 175, 297–300.

    Article  PubMed  CAS  Google Scholar 

  37. Zeron, M.M., Hansson, O., Chen, N., Wellington, C.L., Leavitt, B.R., Brundin, P. et al (2002) Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease Neuron 33, 849–860.

    Article  PubMed  CAS  Google Scholar 

  38. Menalled, L.B. and Chesselet, M.F. (2002) Mouse models of Huntington’s disease Trends Pharmacol. Sci. 23, 32–39.

    Article  PubMed  CAS  Google Scholar 

  39. Bates, G.P., Mangiarini, L., Mahal, A., and Davies, S.W. (1997) Transgenic models of Huntington’s disease Hum. Mol. Genet. 6, 1633–1637.

    Article  PubMed  CAS  Google Scholar 

  40. Li, J.Y., Popovic, N., and Brundin, P. (2005) The use of the R6 transgenic mouse models of Huntington’s disease in attempts to develop novel therapeutic strategies NeuroRx 2, 447–464.

    Article  PubMed  Google Scholar 

  41. Rubinsztein, D.C. (2002) Lessons from animal models of Huntington’s disease Trends Genet. 18, 202–209.

    Article  PubMed  CAS  Google Scholar 

  42. Feany, M.B. and Bender, W.W. (2000) A Drosophila model of Parkinson’s disease Nature 404, 394–398.

    Article  PubMed  CAS  Google Scholar 

  43. Lakso, M., Vartiainen, S., Moilanen, A.M., Sirvio, J., Thomas, J.H., Nass, R. et al (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein J. Neurochem. 86, 165–172.

    Article  PubMed  CAS  Google Scholar 

  44. Kirik, D. and Bjorklund, A. (2003) Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors Trends Neurosci. 26, 386–392.

    Article  PubMed  CAS  Google Scholar 

  45. Zigmond, M.J. and Stricker, E.M. (1972) Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats Science. 177, 1211–1214.

    Article  PubMed  CAS  Google Scholar 

  46. Barker, R.A. and Dunnett, S.B. (1999) Functional integration of neural grafts in Parkinson’s disease Nat. Neurosci. 2, 1047–1048.

    Article  PubMed  CAS  Google Scholar 

  47. Sauer, H. and Oertel, W.H. (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat Neuroscience 59, 401–415.

    Article  PubMed  CAS  Google Scholar 

  48. Ungerstedt, U. and Arbuthnott, G.W. (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system Brain Res. 24, 485–493.

    Article  PubMed  CAS  Google Scholar 

  49. Dunnett, S.B., Hernandez, T.D., Summerfield, A., Jones, G.H., and Arbuthnott, G. (1988) Graft-derived recovery from 6-OHDA lesions: specificity of ventral mesencephalic graft tissues Exp. Brain Res. 71, 411–424.

    Article  PubMed  CAS  Google Scholar 

  50. Barker, R. and Dunnett, S.B. (1994) Ibotenic acid lesions of the striatum reduce drug-induced rotation in the 6-hydroxydopamine-lesioned rat Exp. Brain Res. 101, 365–374.

    Article  PubMed  CAS  Google Scholar 

  51. Iancu, R., Mohapel, P., Brundin, P., and Paul, G. (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice Behav. Brain Res. 162, 1–10.

    Article  PubMed  CAS  Google Scholar 

  52. Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders Science 287, 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  53. van der Putten, H., Wiederhold, K.H., Probst, A., Barbieri, S., Mistl, C., Danner, S., et al (2000) Neuropathology in mice expressing human alpha-synuclein J. Neurosci. 20, 6021–6029.

    PubMed  CAS  Google Scholar 

  54. Giasson, B.I., Duda, J.E., Quinn, S.M., Zhang, B., Trojanowski, J.Q., and Lee, V.M. (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein Neuron 34, 521–533.

    Article  PubMed  CAS  Google Scholar 

  55. Lee, M.K., Stirling, W., Xu, Y., Xu, X., Qui, D., Mandir, A.S., et al (2002) Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53 Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice Proc. Natl Acad. Sci. USA 99, 8968–8973.

    Article  PubMed  CAS  Google Scholar 

  56. Fernagut, P.O. and Chesselet, M.F. (2004) Alpha-synuclein and transgenic mouse models Neurobiol. Dis. 17, 123–130.

    Article  PubMed  CAS  Google Scholar 

  57. Stein, T.D. and Johnson, J.A. (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways J. Neurosci. 22, 7380–7388.

    PubMed  CAS  Google Scholar 

  58. Rochet, J.C., Conway, K.A., and Lansbury, P.T., Jr. (2000) Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein Biochemistry 39, 10619–10626.

    Article  PubMed  CAS  Google Scholar 

  59. Dobrossy, M.D. and Dunnett, S.B. (2005) Optimising plasticity: environmental and training associated factors in transplant-mediated brain repair Rev. Neurosci. 16, 1–21.

    PubMed  Google Scholar 

  60. Watts, C., Caldwell, M.A., and Dunnett, S.B. (1998) The development of intracerebral cell-suspension implants is influenced by the grafting medium Cell Transplant. 7, 573–583.

    Article  PubMed  CAS  Google Scholar 

  61. Johann, V., Schiefer, J., Sass, C., Mey, J., Brook, G., Kruttgen, A., et al (2007) Time of transplantation and cell preparation determine neural stem cell survival in a mouse model of Huntington’s disease Exp. Brain Res. 177, 458–470.

    Article  PubMed  Google Scholar 

  62. Watts, C., McNamara, I.R., and Dunnett, S.B. (2000) Volume and differentiation of striatal grafts in rats: relationship to the number of cells implanted Cell Transplant. 9, 65–72.

    PubMed  CAS  Google Scholar 

  63. O’ Keeffe, G.W. and Sullivan, A.M. (2005) Donor age affects differentiation of rat ventral mesencephalic stem cells Neurosci. Lett. 375, 101–106.

    Article  PubMed  Google Scholar 

  64. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., et al (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo Cell 90, 549–558.

    Article  PubMed  CAS  Google Scholar 

  65. Harvey, A.R., Symons, N.A., Pollett, M.A., Brooker, G.J., and Bartlett, P.F. (1997) Fate of adult neural precursors grafted to adult cortex monitored with a Y-chromosome marker Neuroreport 8, 3939–3943.

    Article  PubMed  CAS  Google Scholar 

  66. Miller, M.W. and Nowakowski, R.S. (1988) Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system Brain Res. 457, 44–52.

    Article  PubMed  CAS  Google Scholar 

  67. Caldwell, M.A., He, X., and Svendsen, C.N. (2005) 5-Bromo-2’-deoxyuridine is selectively toxic to neuronal precursors in vitro Eur. J. Neurosci. 22, 2965–2970.

    Article  PubMed  Google Scholar 

  68. Christie, B.R. and Cameron, H.A. (2006) Neurogenesis in the adult hippocampus Hippocampus 16, 199–207.

    Article  PubMed  CAS  Google Scholar 

  69. Bull, N.D. and Bartlett, P.F. (2005) The adult mouse hippocampal progenitor is neurogenic but not a stem cell J. Neurosci. 25, 10815–10821.

    Article  PubMed  CAS  Google Scholar 

  70. Burns, T.C., Ortiz-Gonzalez, X.R., Gutierrez-Perez, M., Keene, C.D., Sharda, R., Demorest, Z.L., et al (2006) Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution Stem Cells 24, 1121–1127.

    Article  PubMed  CAS  Google Scholar 

  71. Hendriks, W.T., Ruitenberg, M.J., Blits, B., Boer, G.J., and Verhaagen, J. (2004) Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord Prog. Brain Res. 146, 451–476.

    Article  PubMed  CAS  Google Scholar 

  72. Follenzi, A. and Naldini, L. (2002) HIV-based vectors. Preparation and use Methods Mol. Med. 69, 259–274.

    PubMed  CAS  Google Scholar 

  73. Lewis, P.F. and Emerman, M. (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus J. Virol. 68, 510–516.

    PubMed  CAS  Google Scholar 

  74. Liu, Y., Himes, B.T., Solowska, J., Moul, J., Chow, S.Y., Park, K.I., et al (1999) Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus Exp. Neurol. 158, 9–26.

    Article  PubMed  CAS  Google Scholar 

  75. Limke, T.L. and Rao, M.S. (2002) Neural stem cells in aging and disease J. Cell Mol. Med. 6, 475–496.

    Article  PubMed  CAS  Google Scholar 

  76. Watts, C. and Dunnett, S.B. (1998) Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington’s disease: implications for timing of surgical intervention J. Neurosurg. 89, 267–274.

    Article  PubMed  CAS  Google Scholar 

  77. Svendsen, C.N., ter Borg, M.G., Armstrong, R.J., Rosser, A.E., Chandran, S., Ostenfeld, T., et al (1998) A new method for the rapid and long term growth of human neural precursor cells J. Neurosci. Methods 85, 141–152.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Pam Tyers for excellent technical advice and assistance and Dr. Jenny Morton for provision of transgenic HD mice. The corresponding author’s work was supported by the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Barker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Phillips, W., Michell, A., Pruess, H., Barker, R.A. (2009). Animal Models of Neurodegenerative Diseases. In: Gordon, D., Scolding, N. (eds) Neural Cell Transplantation. Methods in Molecular Biology™, vol 549. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-931-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-931-4_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-930-7

  • Online ISBN: 978-1-60327-931-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics