Skip to main content

Functional Imaging of the Human Visual System

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

Summary

The human visual system consists of a large, yet unknown number of cortical areas. We summarize the efforts made to identify these areas, using the macaque visual cortex as a guide. So far, retinotopic mapping has identified several regions and study of functional properties such as motion and shape has revealed further expanses of visual cortex. Macaques and humans share early areas (V1, V2, and V3) and a motion-sensitive middle temporal (MT/V5) region, but the intervening cortex has considerably developed in humans with the appearance of new areas. The kinetic occipital region is located in this part of cortex between V3A and the human MT/V5 complex. Several regions sensitive to motion and even higher order motion have been described in parietal cortex. On the other hand, both dorsal and ventral regions are sensitive to shape, which is most pronounced in the lateral occipital complex (LOC). The anterior part of this complex represents visual objects rather than image properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Essen DC. Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS, editors. The Visual Neurosciences, Vol. 1. Cambridge, MA: MIT Press; 2004, pp. 507–521.

    Google Scholar 

  2. Nelissen K, Luppino G, Vanduffel W, Rizzolatti G, Orban G. Representation of observed actions in macaque occipitotemporal and parietal cortex. Soc Neurosci Abstr USA 2006 (abstract) 306–312.

    Google Scholar 

  3. Orban GA, Van Essen D, Vanduffel W. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 2004;8(7):315–324.

    Article  PubMed  Google Scholar 

  4. Dougherty RF, Ben-Shachar M, Deutsch G, Potanina P, Bammer R, Wandell BA. Occipital-callosal pathways in children: Validation and atlas development. Ann N Y Acad Sci 2005;1064:98–112.

    Article  PubMed  Google Scholar 

  5. Schmahmann JD, Pandya DN, Wang R et al. Association fibre pathways of the brain: Parallel observations from diffusion spectrum imaging and autoradiography. Brain 2007;130 (Part 3):630–653.

    Article  PubMed  Google Scholar 

  6. Sawamura H, Orban GA, Vogels R. Selectivity of neuronal adaptation does not match response selectivity: A single-cell study of the FMRI adaptation paradigm. Neuron 2006;49(2):307–318.

    Article  PubMed  CAS  Google Scholar 

  7. Haynes JD, Rees G. Decoding mental states from brain activity in humans. Nat Rev Neurosci 2006;7(7):523–534.

    Article  PubMed  CAS  Google Scholar 

  8. Vogels R, Orban GA. How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey. J Neurosci 1990;10(11):3543–3558.

    PubMed  CAS  Google Scholar 

  9. Haynes JD, Rees G. Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 2005;8(5):686–691.

    Article  CAS  Google Scholar 

  10. Vanduffel W, Fize D, Mandeville JB et al. Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 2001;32(4):565–577.

    Article  PubMed  CAS  Google Scholar 

  11. Boynton GM, Demb JB, Glover GH, Heeger DJ. Neuronal basis of contrast discrimination. Vision Res 1999;39(2):257–269.

    PubMed  Google Scholar 

  12. Zenger-Landolt B, Heeger DJ. Response suppression in v1 agrees with psychophysics of surround masking. J Neurosci 2003;23(17):6884–6893.

    PubMed  Google Scholar 

  13. Chandrasekaran C, Canon V, Dahmen JC, Kourtzi Z, Welchman AE. Neural correlates of disparity-defined shape discrimination in the human brain. J Neurophysiol 2007;97(2):1553–1565.

    PubMed  Google Scholar 

  14. Denys K, Vanduffel W, Fize D et al. The processing of visual shape in the cerebral cortex of human and nonhuman primates: A functional magnetic resonance imaging study. J Neurosci 2004;24(10):2551–2565.

    Article  PubMed  Google Scholar 

  15. Kourtzi Z, Kanwisher N. Cortical regions involved in perceiving object shape. J Neurosci 2000;20:3310–3318.

    PubMed  CAS  Google Scholar 

  16. Kourtzi Z, Kanwisher N. Cortical regions involved in perceiving object shape. J Neurosci 2000;20(9):3310–3318.

    PubMed  Google Scholar 

  17. Buckner RL, Goodman J, Burock M et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 1998;20:285–296.

    Article  PubMed  CAS  Google Scholar 

  18. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 1999;24:187–203.

    Article  PubMed  CAS  Google Scholar 

  19. Grill-Spector K, Malach R. fMR-adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychol 2001;107(1–3):293–321.

    Article  Google Scholar 

  20. Grill-Spector K, Henson R, Martin A. Repetition and the brain: Neural models of stimulus-specific effects. Trends Cogn Sci 2006;10(1):14–23.

    Article  PubMed  Google Scholar 

  21. Koutstaal W, Wagner AD, Rotte M, Maril A, Buckner RL, Schacter DL. Perceptual specificity in visual object priming: Functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia 2001;39(2):184–199.

    Article  PubMed  Google Scholar 

  22. Vuilleumier P, Henson RN, Driver J, Dolan RJ. Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat Neurosci 2002;5(5):491–499.

    Article  PubMed  CAS  Google Scholar 

  23. Lisberger SG, Movshon JA. Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 1999;19(6):2224–2246.

    PubMed  Google Scholar 

  24. Muller JR, Metha AB, Krauskopf J, Lennie P. Rapid adaptation in visual cortex to the structure of images. Science 1999;285(5432):1405–1408.

    PubMed  Google Scholar 

  25. Tootell RBH, Reppas JB, Dale AM et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 1995;375:139–141.

    Article  PubMed  CAS  Google Scholar 

  26. Huk AC, Ress D, Heeger DJ. Neuronal basis of the motion aftereffect reconsidered. Neuron 2001;32:161–172.

    Article  PubMed  CAS  Google Scholar 

  27. Huk AC, Heeger DJ. Pattern-motion responses in human visual cortex. Nat Neurosci 2002;5(1):72–75.

    Article  PubMed  CAS  Google Scholar 

  28. Engel SA, Furmanski CS. Selective adaptation to color contrast in human primary visual cortex. J Neurosci 2001;21(11):3949–3954.

    PubMed  Google Scholar 

  29. Tolias AS, Smirnakis SM, Augath MA, Trinath T, Logothetis NK. Motion processing in the macaque: Revisited with functional magnetic resonance imaging. J Neurosci 2001;21:8594–8601.

    PubMed  CAS  Google Scholar 

  30. Nelissen K, Vanduffel W, Orban GA. Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus. J Neurosci 2006;26(22):5929–5947.

    Article  PubMed  CAS  Google Scholar 

  31. Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 2003;19(2, Part 1):261–270.

    Article  PubMed  Google Scholar 

  32. Haynes JD, Rees G. Decoding mental states from brain activity in humans. Nat Rev Neurosci 2006;7(7):523–534.

    Article  PubMed  CAS  Google Scholar 

  33. Norman KA, Polyn SM, Detre GJ, Haxby JV. Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 2006;10(9):424–430.

    Article  PubMed  Google Scholar 

  34. Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain. Nat Neurosci 2005;8(5):679–685.

    Article  PubMed  CAS  Google Scholar 

  35. Kamitani Y, Tong F. Decoding seen and attended motion directions from activity in the human visual cortex. Curr Biol 2006;16(11):1096–1102.

    Article  PubMed  CAS  Google Scholar 

  36. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001;293(5539):2425–2430.

    Article  PubMed  CAS  Google Scholar 

  37. Hanson SJ, Matsuka T, Haxby JV. Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: Is there a “face” area? 2004;23(1):156–166.

    Google Scholar 

  38. O’Toole AJ, Jiang F, Abdi H, Haxby JV. Partially distributed representations of objects and faces in ventral temporal cortex. J Cogn Neurosci 2005;17(4):580–590.

    PubMed  Google Scholar 

  39. Williams MA, Dang S, Kanwisher NG. Only some spatial patterns of fMRI response are read out in task performance. Nat Neurosci 2007;10(6):685–686.

    Article  PubMed  CAS  Google Scholar 

  40. Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RN. A critique of functional localisers. Neuroimage 2006;30(4):1077–1087.

    PubMed  Google Scholar 

  41. Saxe R, Brett M, Kanwisher N. Divide and conquer: A defense of functional localizers. Neuroimage 2006;30(4):1088–1096.

    Article  PubMed  Google Scholar 

  42. Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, Van Essen DC. Mapping human visual cortex with positron emission tomography. Nature 1986;323:806–809.

    Article  PubMed  CAS  Google Scholar 

  43. Schneider W, Noll DC, Cohen JD. Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 1993;365:150–153.

    Article  PubMed  CAS  Google Scholar 

  44. Shipp S, Watson JDG, Frackowiak RSJ, Zeki S. Retinotopic maps in human prestriate visual cortex: The demarcation of areas V2 and V3. Neuroimage 1995;2:125–132.

    Article  PubMed  CAS  Google Scholar 

  45. Engel SA, Rumelhart DE, Wandell BA et al. fMRI of human visual cortex. Nature 1994;369:525.

    Article  PubMed  CAS  Google Scholar 

  46. Sereno MI, Dale AM, Reppas JB et al. Borders of multiple visual areas in humans revealed by functional MRI. Science 1995;268:889–893.

    Article  PubMed  CAS  Google Scholar 

  47. DeYoe EA, Carman GJ, Bandettini P et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA 1996;93:2382–2386.

    Article  PubMed  CAS  Google Scholar 

  48. Engel SA, Glover GH, Wandell BA. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebr Cortex 1997;7:181–192.

    Article  CAS  Google Scholar 

  49. Lyon DC, Kaas JH. Evidence for a modified V3 with dorsal and ventral halves in macaque monkeys. Neuron 2002;33:453–461.

    Article  PubMed  CAS  Google Scholar 

  50. Rosa MG, Tweedale R. Brain maps, great and small: Lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B Biol Sci 2005;360(1456):665–691.

    Article  PubMed  Google Scholar 

  51. Sereno MI, Dale AM, Reppas JB et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 1995;268(5212):889–893.

    Article  PubMed  CAS  Google Scholar 

  52. Duncan RO, Boynton GM. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 2003;38(4):659–671.

    Article  PubMed  CAS  Google Scholar 

  53. Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J Vis 2003;3(10):586–598.

    Article  PubMed  Google Scholar 

  54. Adams DL, Sincich LC, Horton JC. Complete pattern of ocular dominance columns in human primary visual cortex. J Neurosci 2007;27(39):10391–10403.

    Article  PubMed  CAS  Google Scholar 

  55. Van Essen DC, Newsome WT, Maunsell JH. The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Res 1984;24:429–448.

    Article  PubMed  CAS  Google Scholar 

  56. Zeki S, Watson JDG, Lueck CJ, Friston KJ, Kennard C, Frackowiak RSJ. A direct demonstration of functional specialization in human visual cortex. J Neurosci 1991;11:641–649.

    PubMed  CAS  Google Scholar 

  57. Watson JDG, Myers R, Frackowiak RSJ et al. Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 1993;3:79–94.

    Article  PubMed  CAS  Google Scholar 

  58. Tootell RBH, Reppas JB, Kwong KK et al. Functional analysis of human MT/V5 and related visual cortical areas using magnetic resonance imaging. J Neurosci 1995;15:3215–3230.

    PubMed  CAS  Google Scholar 

  59. Huk AC, Dougherty RF, Heeger DJ. Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 2002;22(16):7195–7205.

    PubMed  Google Scholar 

  60. Dukelow SP, DeSouza JF, Culham JC, van-den-Berg AV, Menon RS, Vilis T. Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 2001;86:1991–2000.

    PubMed  CAS  Google Scholar 

  61. Smith AT, Wall MB, Williams AL, Singh KD. Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 2006;23(2):561–569.

    Article  PubMed  CAS  Google Scholar 

  62. Van Essen DC, Maunsell JHR, Bixby JL. The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 1981;199:293–326.

    Article  PubMed  CAS  Google Scholar 

  63. Fize D, Vanduffel W, Nelissen K et al. The retinotopic organization of primate dorsal V4 and surrounding areas: A functional magnetic resonance imaging study in awake monkeys. J Neurosci 2003;23(19):7395–7406.

    PubMed  CAS  Google Scholar 

  64. Kolster H, Ekstrom LB, Mandeville JB, Wald LL, Dale AM, Vanduffel W. Can we distinguish MT from neighboring areas V4t and MST using awake monkey fMRI procedures at 7T? Soc Neurosci Abstr USA 2006 (abstract) 114–118.

    Google Scholar 

  65. Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC. A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 2000;3:1322–1328.

    Article  PubMed  CAS  Google Scholar 

  66. Tootell RB, Mendola JD, Hadjikhani NK et al. Functional analysis of V3A and related areas in human visual cortex. J Neurosci 1997;17:7060–7078.

    PubMed  CAS  Google Scholar 

  67. Sunaert S, Van Hecke P, Marchal G, Orban GA. Motion-responsive regions of the human brain. Exp Brain Res 1999;127(4):355–370.

    Article  PubMed  CAS  Google Scholar 

  68. Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA. Visual areas and spatial summation in human visual cortex. Vision Res 2001;41(10–11):1321–1332.

    Article  PubMed  CAS  Google Scholar 

  69. Wandell BA, Brewer AA, Dougherty RF. Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci 2005;360(1456):693–707.

    Article  PubMed  Google Scholar 

  70. Orban GA, Claeys K, Nelissen K et al. Mapping the parietal cortex of human and non-human primates. Neuropsychologia 2006;44(13):2647–2667.

    Article  PubMed  Google Scholar 

  71. Larsson J, Heeger DJ. Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 2006;26(51):13128–13142.

    Article  PubMed  CAS  Google Scholar 

  72. Lyon DC, Kaas JH. Evidence from V1 connections for both dorsal and ventral subdivisions of V3 in three species of New World monkeys. J Comp Neurol 2002;449(3):281–297.

    Article  PubMed  Google Scholar 

  73. Tootell RB, Hadjikhani N. Where is ‘dorsal V4’ in human visual cortex? Retinotopic, topographic and functional evidence. Cereb Cortex 2001;11:298–311.

    Article  PubMed  CAS  Google Scholar 

  74. Gattass R, Sousa AP, Gross CG. Visuotopic organization and extent of V3 and V4 of the macaque. J Neurosci 1988;8:1831–1845.

    PubMed  CAS  Google Scholar 

  75. Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA. The kinetic occipital (KO) region in man: An fMRI study. Cereb Cortex 1997;7(7):690–701.

    Article  PubMed  CAS  Google Scholar 

  76. Nelissen K, Vanduffel W, Sunaert S, Janssen P, Tootell RB, Orban GA. Processing of kinetic boundaries investigated using fMRI and double-label deoxyglucose technique in awake monkeys. Soc Neurosci Abstr USA 2000;26:1584.

    Google Scholar 

  77. Brewer AA, Liu J, Wade AR, Wandell BA. Visual field maps and stimulus selectivity in human ventral occipital cortex. Nat Neurosci 2005;8(8):1102–1109.

    Article  PubMed  CAS  Google Scholar 

  78. Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J. The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 1998;18(10):3816–3830.

    PubMed  CAS  Google Scholar 

  79. Tootell RB, Tsao D, Vanduffel W. Neuroimaging weighs in: Humans meet macaques in “primate” visual cortex. J Neurosci 2003;23(10):3981–3989.

    PubMed  CAS  Google Scholar 

  80. Claeys KG, Lindsey DT, De SE, Orban GA. A higher order motion region in human inferior parietal lobule: Evidence from fMRI. Neuron 2003;40(3):631–642.

    Article  PubMed  CAS  Google Scholar 

  81. Orban GA, Sunaert S, Todd JT, Van HP, Marchal G. Human cortical regions involved in extracting depth from motion. Neuron 1999;24(4):929–940.

    Article  PubMed  CAS  Google Scholar 

  82. Pitzalis S, Galletti C, Huang RS et al. Wide-field retinotopy defines human cortical visual area v6. J Neurosci 2006;26(30):7962–7973.

    Article  PubMed  CAS  Google Scholar 

  83. Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC. Visual topography of human intraparietal sulcus. J Neurosci 2007;27(20):5326–5337.

    Article  PubMed  CAS  Google Scholar 

  84. Silver MA, Ress D, Heeger DJ. Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 2005;94(2):1358–1371.

    Article  PubMed  Google Scholar 

  85. Sereno MI, Pitzalis S, Martinez A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 2001;294(5545):1350–1354.

    Article  PubMed  CAS  Google Scholar 

  86. Schluppeck D, Glimcher P, Heeger DJ. Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 2005;94(2):1372–1384.

    Article  PubMed  Google Scholar 

  87. Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ. Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 2006;26(19):5098–5108.

    Article  PubMed  CAS  Google Scholar 

  88. Sunaert S, Van Hecke P, Marchal G, Orban GA. Attention to speed of motion, speed discrimination, and task difficulty: An fMRI study. Neuroimage 2000;11(6, Part 1):612–623.

    Article  PubMed  CAS  Google Scholar 

  89. Rees G, Friston K, Koch C. A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 2000;3:716–723.

    Article  PubMed  CAS  Google Scholar 

  90. Binkofski F, Dohle C, Posse S et al. Human anterior intraparietal area subserves prehension: A combined lesion and functional MRI activation study. Neurology 1998;50(5):1253–1259.

    Article  PubMed  CAS  Google Scholar 

  91. Vanduffel W, Fize D, Peuskens H et al. Extracting 3D from motion: Differences in human and monkey intraparietal cortex. Science 2002;298(5592):413–415.

    Article  PubMed  CAS  Google Scholar 

  92. Orban GA, Fize D, Peuskens H et al. Similarities and differences in motion processing between the human and macaque brain: Evidence from fMRI. Neuropsychologia 2003;41(13):1757–1768.

    Article  PubMed  Google Scholar 

  93. Stout D, Chaminade T. The evolutionary neuroscience of tool making. Neuropsychologia 2007;45(5):1091–1100.

    Article  PubMed  Google Scholar 

  94. Peuskens H, Sunaert S, Dupont P, Van HP, Orban GA. Human brain regions involved in heading estimation. J Neurosci 2001;21(7):2451–2461.

    PubMed  CAS  Google Scholar 

  95. Braddick OJ, O’Brien JM, Wattam-Bell J, Atkinson J, Turner R. Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Curr Biol 2000;10(12):731–734.

    Article  PubMed  CAS  Google Scholar 

  96. Grüsser O-J, Guldin WO, Mirring S, Salah-Eldin A. Comparative physiological and anatomical studies of the primate vestibular cortex. In: Albowitz B, Albus K, Kuhnt U, Nothdurft H-C, Wahle P, editors. Structural and functional organization of the neocortex. Proceedings of a Symposium in the Memory of Otto D. Creutzfeldt, May 1993, Exp. Brain Res. Series 24. 1994, pp. 358–371.

    Google Scholar 

  97. Orban GA, Dupont P, De Bruyn B, Vogels R, Vandenberghe R, Mortelmans L. A motion area in human visual cortex. Proc Natl Acad Sci USA 1995;92(4):993–997.

    Article  PubMed  CAS  Google Scholar 

  98. Dupont P, De Bruyn B, Vandenberghe R et al. The kinetic occipital region in human visual cortex. Cereb Cortex 1997;7(3):283–292.

    Article  PubMed  CAS  Google Scholar 

  99. Tyler CW, Likova LT, Kontsevich LL, Wade AR. The specificity of cortical region KO to depth structure. Neuroimage 2006;30(1):228–238.

    Article  PubMed  Google Scholar 

  100. Zeki S, Perry RJ, Bartels A. The processing of kinetic contours in the brain. Cereb Cortex 2003;13 (2):189–202.

    Article  PubMed  CAS  Google Scholar 

  101. Lu Z-L, Sperling G. Attention-generated appa­rent motion. Nature 1995;377:237–239.

    Article  PubMed  CAS  Google Scholar 

  102. Lu ZL, Lesmes LA, Sperling G. The mechanism of isoluminant chromatic motion perception. Proc Natl Acad Sci USA 1999;96:8289–8294.

    Article  PubMed  CAS  Google Scholar 

  103. Ungerleider LG, Mishkin M. Two cortical visual systems. In: Ingle DJ, Mansfield RJW, Goodale MS, editors. The analysis of visual behavior. Cambridge, MA: MIT Press;1982, pp. 549–586.

    Google Scholar 

  104. Malach R, Reppas JB, Benson RR et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 1995;92(18):8135–8139.

    Article  PubMed  CAS  Google Scholar 

  105. Kanwisher N, Chun MM, McDermott J, Ledden PJ. Functional imagining of human visual recognition. Brain Res Cogn Brain Res 1996;5(1–2):55–67.

    Article  Google Scholar 

  106. Sawamura H, Georgieva S, Vogels R, Vanduffel W, Orban GA. Using functional magnetic resonance imaging to assess adaptation and size invariance of shape processing by humans and monkeys. J Neurosci 2005;25(17):4294–4306.

    Article  PubMed  CAS  Google Scholar 

  107. Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1991;1:1–47.

    Article  PubMed  CAS  Google Scholar 

  108. Tanaka K, Saito H, Fukada Y, Moriya M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 1991;66:170–189.

    PubMed  CAS  Google Scholar 

  109. Grill-Spector K, Malach R. The human visual cortex. Annu Rev Neurosci 2004;27:649–677.

    Article  PubMed  CAS  Google Scholar 

  110. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature 2005;435(7045):1102–1107.

    Article  PubMed  CAS  Google Scholar 

  111. Reddy L, Kanwisher N. Coding of visual objects in the ventral stream. Curr Opin Neurobiol 2006;16(4):408–414.

    Article  PubMed  CAS  Google Scholar 

  112. Privman E, Nir Y, Kramer U et al Enhanced category tuning revealed by intracranial electroencephalograms in high-order human visual areas. J Neurosci 2007;27(23):6234–6242.

    Article  PubMed  CAS  Google Scholar 

  113. Altmann CF, Bulthoff HH, Kourtzi Z. Perceptual organization of local elements into global shapes in the human visual cortex. Curr Biol 2003;13(4):342–349.

    Article  PubMed  Google Scholar 

  114. Kourtzi Z, Tolias AS, Altmann CF, Augath M, Logothetis NK. Integration of local features into global shapes: Monkey and human FMRI studies. Neuron 2003;37(2):333–346.

    Article  PubMed  CAS  Google Scholar 

  115. Kourtzi Z, Kanwisher N. Representation of perceived object shape by the human lateral occipital complex. Science 2001;293:1506–1509.

    Article  PubMed  CAS  Google Scholar 

  116. Spiridon M, Kanwisher N. How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron 2002;35(6):1157–1165.

    Article  PubMed  CAS  Google Scholar 

  117. Wade AR, Brewer AA, Rieger JW, Wandell BA. Functional measurements of human ventral occipital cortex: Retinotopy and colour. Philos Trans R Soc Lond B Biol Sci 2002;357:963–973.

    Article  PubMed  Google Scholar 

  118. Levy I, Hasson U, Avidan G, Hendler T, Malach R. Center–periphery organization of human object areas. Nat Neurosci 2001;4(5):533–539.

    PubMed  Google Scholar 

  119. Hasson U, Levy I, Behrmann M, Hendler T, Malach R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 2002;34(3):479–490.

    Article  PubMed  Google Scholar 

  120. Rolls ET. Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 2000;27(2):205–218.

    Article  PubMed  Google Scholar 

  121. Hung CP, Kreiman G, Poggio T, DiCarlo JJ. Fast readout of object identity from macaque inferior temporal cortex. Science 2005;310(5749).

    Google Scholar 

  122. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 1999;24:187–203.

    Article  PubMed  CAS  Google Scholar 

  123. Cumming BG, DeAngelis GC. The physiology of stereopsis. Annu Rev Neurosci 2001;24:203–238.

    Article  PubMed  CAS  Google Scholar 

  124. Parker AJ. Binocular depth perception and the cerebral cortex. Nat Rev Neurosci 2007;8(5):379–391.

    Article  PubMed  CAS  Google Scholar 

  125. Neri P, Bridge H, Heeger DJ. Stereoscopic processing of absolute and relative disparity in human visual cortex. J Neurophysiol 2004;92(3):1880–1891.

    Article  PubMed  Google Scholar 

  126. Orban GA, Janssen P, Vogels R. Extracting 3D structure from disparity. Trends Neurosci 2006;29(8):466–473.

    Article  PubMed  CAS  Google Scholar 

  127. Gulyas B, Roland PE. Processing and analysis of form, clour and binocular disparity in the human brain: Functional anatomy by positron emision tomography. Eur J Neurosci 1994;6:1811–1828.

    Article  PubMed  CAS  Google Scholar 

  128. Mendola JD, Dale AM, Fischl B, Liu AK, Tootell RB. The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J Neurosci 1999;19:8560–8572.

    PubMed  CAS  Google Scholar 

  129. Backus BT, Fleet DJ, Parker AJ, Heeger DJ. Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol 2001;86(4):2054–2068.

    PubMed  CAS  Google Scholar 

  130. Tsao DY, Vanduffel W, Sasaki Y et al. Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 2003;39(3):555–568.

    Article  PubMed  CAS  Google Scholar 

  131. Brouwer GJ, van ER, Schwarzbach J. Activation in visual cortex correlates with the awareness of stereoscopic depth. J Neurosci 2005;25(45):10403–10413.

    Article  PubMed  CAS  Google Scholar 

  132. Gilaie-Dotan S, Ullman S, Kushnir T, Malach R. Shape-selective stereo processing in human object-related visual areas. Hum Brain Mapp 2002;15(2):67–79.

    Article  PubMed  Google Scholar 

  133. Shikata E, Hamzei F, Glauche V et al. Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: An event-related fMRI study. J Neurophysiol 2001;85(3):1309–1314.

    PubMed  CAS  Google Scholar 

  134. Taira M, Nose I, Inoue K, Tsutsui K. Cortical areas related to attention to 3D surface structures based on shading: An fMRI study. Neuroimage 2001;14(5):959–966.

    Article  PubMed  CAS  Google Scholar 

  135. James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA. Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 2002;40(10):1706–1714.

    Article  PubMed  Google Scholar 

  136. Sereno ME, Trinath T, Augath M, Logothetis NK. Three-dimensional shape representation in monkey cortex. Neuron 2002;33:635–652.

    Article  PubMed  CAS  Google Scholar 

  137. Kourtzi Z, Erb M, Grodd W, Bulthoff HH. Representation of the perceived 3-D object shape in the human lateral occipital complex. Cereb Cortex 2003;13(9):911–920.

    Article  PubMed  Google Scholar 

  138. Murray SO, Olshausen BA, Woods DL. Processing shape, motion and three-dimensional shape-from-motion in the human cortex. Cereb Cortex 2003;13(5):508–516.

    Article  PubMed  Google Scholar 

  139. Orban GA. Three-dimensional shape: Cortical mechanisms of shape extraction. In: Masland RHATD, editor. Handbook of The Senses, Vol. 5: Vision. Amsterdam: Elsevier;2007.

    Google Scholar 

  140. Durand JB, Nelissen K, Joly O et al. Anterior regions of monkey parietal cortex process visual 3D shape. Neuron 2007;55(3):493–505.

    Article  CAS  Google Scholar 

  141. Welchman AE, Deubelius A, Conrad V, Bulthoff HH, Kourtzi Z. 3D shape perception from combined depth cues in human visual cortex. Nat Neurosci 2005;8(6):820–827.

    Article  PubMed  CAS  Google Scholar 

  142. Brewer AA, Press WA, Logothetis NK, Wandell BA. Visual areas in macaque cortex measured using functional magnetic resonance imaging. J Neurosci 2002; 22(23):10416–10426.

    PubMed  CAS  Google Scholar 

  143. Sereno AB, Maunsell JH. Shape selectivity in primate lateral intraparietal cortex. Nature 1998;395:500–503.

    Article  PubMed  CAS  Google Scholar 

  144. Janssen P, Srivastava S, Ombelet S, Orban GA. Coding of shape and position in macaque area LIP. J Neurosci 2008;28:6679–6690.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Orban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Orban, G.A., Kourtzi, Z. (2009). Functional Imaging of the Human Visual System. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics