Skip to main content

fMRI of Emotion

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

Summary

Recent brain imaging work has expanded our understanding of the mechanisms of perceptual, cognitive, and motor functions in human subjects, but research into the cerebral control of emotional and motivational function is at a much earlier stage. Important concepts and theories of emotion are briefly introduced, as are research designs and multimodal approaches to answering the central questions in the field. We provide a detailed inspection of the methodological and technical challenges in assessing the cerebral correlates of emotional activation, perception, learning, memory, and emotional regulation behavior in healthy humans. fMRI is particularly challenging in structures such as the amygdala as it is affected by susceptibility-related signal loss, image distortion, physiological and motion artifacts and colocalized Resting State Networks (RSNs). We review how these problems can be mitigated by using optimized echo-planar imaging (EPI) parameters, alternative MR sequences, and correction schemes. High-quality data can be acquired rapidly in these problematic regions with gradient compensated multiecho EPI or high resolution EPI with parallel imaging and optimum gradient directions, combined with distortion correction. Although neuroimaging studies of emotion encounter many difficulties regarding the limitations of measurement precision, research design, and strategies of validating neuropsychological emotion constructs, considerable improvement in data quality and sensitivity to subtle effects can be achieved. The methods outlined offer the prospect for fMRI studies of emotion to provide more sensitive, reliable, and representative models of measurement that systematically relate the dynamics of emotional regulation behavior with topographically distinct patterns of activity in the brain. This will provide additional information as an aid to assessment, categorization, and treatment of patients with emotional and personality disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Büchel C, Dolan RJ. Classical fear conditioning in functional neuroimaging. Curr Opin Neurobiol 2000;10:219–23.

    Article  PubMed  Google Scholar 

  2. Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 2002;16:331–48.

    Article  PubMed  Google Scholar 

  3. Dolan RJ, Vuilleumier P. Amygdala automaticity in emotional processing. Ann N Y Acad Sci 2003;985:348–55.

    Article  PubMed  CAS  Google Scholar 

  4. Wager TD, Phan KL, Liberzon I, Taylor SF. Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage 2003;19:513–31.

    Article  PubMed  Google Scholar 

  5. Zald DH. The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Brain Res Rev 2003;41:88–123.

    Article  PubMed  Google Scholar 

  6. Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci 2005;9:242–9.

    Article  PubMed  Google Scholar 

  7. Panksepp J. Affective neuroscience: The foundations of human and animal emotions. Oxford: Oxford University Press, 1998.

    Google Scholar 

  8. Davidson RJ, Jackson DC, Kalin NH. Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychol Bull 2000;126:890–909.

    Article  PubMed  CAS  Google Scholar 

  9. Dolan RJ. Emotion, cognition, and behavior. Science, 2002;298:1191–4.

    Article  PubMed  CAS  Google Scholar 

  10. Breiter HC, Rauch SL. Functional MRI and the study of OCD: From symptom provocation to cognitive-behavioral probes of cortico-striatal systems and the amygdala. NeuroImage 1996;4:127–38.

    Article  Google Scholar 

  11. Johnson PA, Hurley RA, Benkelfat C, Herpertz SC, Taber KH. Understanding emotion regulation in borderline personality disorder: Contributions of neuroimaging. J Neuropsychiatry Clin Neurosci 2003;15:397–402.

    Article  PubMed  Google Scholar 

  12. Hamann S, Canli T. Individual differences in emotion processing. Curr Opin Neurobiol 2004;14:233–8.

    Article  PubMed  CAS  Google Scholar 

  13. Paquette V, Levesque J, Mensour B, et al. Change the mind and you change the brain: Effects of cognitive-behavioral therapy on the neural correlates of spider phobia. Neuroimage 2003;18:401–9.

    Article  PubMed  Google Scholar 

  14. Popma A, Raine A. Will future forensic assessment be neurobiologic? Child Adolesc Psychiatr Clin N Am 2006;15:429–44.

    Article  PubMed  Google Scholar 

  15. Bräutigam S. Neuroeconomics – from neural systems to economic behaviour. Brain Res Bull 2005;67:355–60.

    Article  Google Scholar 

  16. Walter H, Abler B, Ciaramidaro A, Erk S. Motivating forces of human actions: Neuroimaging reward and social interaction. Brain Res Bull 2005;67:368–81.

    Article  PubMed  Google Scholar 

  17. Adolphs R, Tranel D, Damasio H, Damasio A.Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 1994;372:669–72.

    Article  PubMed  CAS  Google Scholar 

  18. Broks P, Young AW, Maratos EJ, et al. Face processing impairments after encephalitis: Amygdala damage and recognition of fear. Neuropsychologia 1998;36:59–70.

    Article  PubMed  CAS  Google Scholar 

  19. Sprengelmeyer R, Young AW, Schröder U, et al. Knowing no fear. Proc R Soc Lond B Biol Sci 1999;266:2451–6.

    Article  CAS  Google Scholar 

  20. Adolphs R, Gosselin F, Buchanan T, Tranel D, Schyns P, Damasio A. A mechanism for impaired fear recognition after amygdala damage. Nature 2005;433:68–72.

    Article  PubMed  CAS  Google Scholar 

  21. Adolphs R, Tranel D, Hamann S, et al. Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 1999;37:1111–7.

    Article  PubMed  CAS  Google Scholar 

  22. Schmolck H, Squire LR. Impaired perception of facial emotions following bilateral damage to the anterior temporal lobe. Neuropsychology 2001;15:30–8.

    Article  PubMed  CAS  Google Scholar 

  23. LeDoux JE. Emotion: Clues from the brain. Annu Rev Psychol 1995;46:209–35.

    Article  PubMed  CAS  Google Scholar 

  24. LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA. Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fMRI study. Neuron 1998;20:937–45.

    Article  PubMed  CAS  Google Scholar 

  25. Morris JS, Büchel C, Dolan RJ. Parallel neural responses in amygdala subregions and sensory cortex during implicit fear. Neurobiol 2002;12:169–77.

    Google Scholar 

  26. Büchel C, Morris J, Dolan RJ, Friston KJ. Brain systems mediating aversive conditioning: An event-related fMRI study. Neuron 1998;20:947–57.

    Article  PubMed  Google Scholar 

  27. Krech D. Dynamic systems as open neurological systems. Psychol Rev 1950;57:345–61.

    Article  PubMed  CAS  Google Scholar 

  28. Cacioppo JT, Tassinary LG, Berntson GG (Eds.). Handbook of psychophysiology. Cambridge: Cambridge University Press, 2000.

    Google Scholar 

  29. Scherer KR, Peper M. Psychological theories of emotion and neuropsychological research. In: G. Gainotti (Ed.), Handbook of neuropsychology, Vol. 5: Emotional behavior and its disorders (2nd edition). Amsterdam: Elsevier, 2001, pp. 17–48.

    Google Scholar 

  30. Coan JA, Allen JJB (Eds.). Handbook of emotion elicitation and assessment. New York, NY: Oxford University Press, 2007.

    Google Scholar 

  31. Peper M, Vauth R. Socio-emotional processing competences: Assessment and clinical application. In: Vandekerckhove M, von Scheve C, Ismer S, Jung S, Kronast S (Eds.), Regulating emotions (ch. 9). Hoboken, NJ: Wiley, 2008.

    Google Scholar 

  32. Kerlinger FN, Lee HB. Foundations of behavioral research (4th edition). Fort Worth, TX: Harcourt College Publishers, 2000.

    Google Scholar 

  33. Scherer KR. Neuroscience projections to current debates in emotion psychology. Cogn Emot 1993;7:1–41.

    Article  Google Scholar 

  34. Scherer KR. Psychological models of emotion. In J. Borod (Ed.). The neuropsychology of emotion. Oxford: Oxford University Press, 2000, pp. 137–62.

    Google Scholar 

  35. Scherer KR. Appraisal theories. In: Dalgleish T, Power M (Eds.). Handbook of cognition and emotion. Chichester: Wiley, 1999, pp. 637–63.

    Google Scholar 

  36. Peper M, Fahrenberg J. Psychophysiologie. In: Sturm W, Herrmann M, Münte TF (Eds.). Lehrbuch der Klinischen Neuropsychologie. Heidelberg: Spektrum Akademischer Verlag, 2008.

    Google Scholar 

  37. Stemmler G, Fahrenberg J. Psychophysiological assessment: Conceptual, psychometric, and statistical issues. In: G. Turpin (Ed.) Handbook of clinical psychophysiology. Chichester: Wiley, 1989, pp. 71–104.

    Google Scholar 

  38. Stemmler G. Differential psychophysiology: Persons in situations. Heidelberg: Springer, 1992.

    Book  Google Scholar 

  39. Johnsen BH, Thayer JF, Hugdahl K. Affective judgment of the Ekman faces: A dimensional approach. J Psychophysiol 1995;9:193–202.

    Google Scholar 

  40. Peper M, Irle E. The decoding of emotional concepts in patients with focal cerebral lesions. Brain Cogn 1997;34:360–87.

    Article  PubMed  CAS  Google Scholar 

  41. Ekman P. Strong evidence for universals in facial expressions. Psychol Bull 1994;115:268–87.

    Article  PubMed  CAS  Google Scholar 

  42. Russell JA. Is there universal recognition of emotion from facial expressions? Psychol Bull 1994;115:102–41.

    Article  PubMed  CAS  Google Scholar 

  43. Stemmler G. Emotionen. In: F Rösler (Ed.) Enzyklopädie der Psychologie: Themenbereich C Theorie und Forschung, Serie 1 Biologische Psychologie, Band 5 Ergebnisse und Anwendungen der Psychophysiologie. Göttingen: Hogrefe 1998, pp. 95–163.

    Google Scholar 

  44. Scherer KR. On the nature and function of emotion: A component process approach. In: Scherer KR, Ekman P (Eds.) Approaches to emotion. Hillsdale, NJ: Erlbaum, 1984, pp. 203–317.

    Google Scholar 

  45. Lacey JI. Somatic response patterning and stress: Some revisions of activation theory. In: Appley MH, Trumbull R (Eds.) Psychological stress: Issues in research. New York, NY: Appleton-Century Crofts, 1967, pp. 14–42.

    Google Scholar 

  46. Peper M. Awareness of emotions: A neuropsychological perspective. Adv Consciousness Stud 2000;16:245–70.

    Google Scholar 

  47. Lang P, Rice DG, Sternbach RA. The psychophysiology of emotion. In: Greenfield NS, Sternbach RA (Eds.) Handbook of psychophysiology. New York, NY: Holt, 1972, pp. 623–43.

    Google Scholar 

  48. Fahrenberg J. Psychophysiologische Methodik. In: Groffman K-J, Michel L (Eds.) Enzyklopädie der Psychologie: Themenbereich B Methodologie und Methoden, Serie II Psychologische Diagnostik, Band 4 Verhaltensdiagnostik. Göttingen: Hogrefe, 1983, pp. 1–192.

    Google Scholar 

  49. Lazarus RS. Emotion and adaptation. New York, NY: Oxford University Press, 1991.

    Google Scholar 

  50. Parkinson B, Totterdell P. Classifying affect-regulation strategies. Cogn Emot 1999;13:277–303.

    Article  Google Scholar 

  51. Gross JJ, Levenson RW. Emotional suppression: Physiology, self-report, and expressive behavior. J Pers Soc Psychol 1991;64:970–86.

    Google Scholar 

  52. Lazarus RS, Folkman S. Stress, appraisal, and coping. New York, NY: Springer, 1984.

    Google Scholar 

  53. Gross JJ. Rev Gen Psychol 1999;2:271–99.

    Article  Google Scholar 

  54. Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 1998;18:411–8.

    PubMed  CAS  Google Scholar 

  55. Pessoa L, Japee S, Sturman D, Ungerleider LG. Target visibility and visual awareness modulate amygdala responses to fearful faces. Cereb Cortex 2006;16:366–75.

    Article  PubMed  Google Scholar 

  56. McIntosh AR, Gonzalez-Lima F. Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: Fluorodeoxyglucose mapping and covariance structural modeling. J Neurophysiol 1994;72:1717–33.

    PubMed  CAS  Google Scholar 

  57. Büchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling. Magn Reson Imaging 1997;15:763–70.

    Article  Google Scholar 

  58. Büchel C, Friston KJ. Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw 2000;13:871–82.

    Article  PubMed  Google Scholar 

  59. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage 2003;19:1273–302.

    Article  PubMed  CAS  Google Scholar 

  60. Vuilleumier P, Richardson MP, Armony JL, Driver J, Dolan RJ. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nat Neurosci 2004;7:1271–8.

    Article  PubMed  CAS  Google Scholar 

  61. Friston KJ. Functional and effective connectivity in neuroimaging: A synthesis. Hum Brain Mapp 1994;2:56–78.

    Article  Google Scholar 

  62. Ochsner KN, Ray RD, Cooper JC, et al. For better or for worse: Neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 2004;23:483–99.

    Article  PubMed  Google Scholar 

  63. Fahrenberg J, Peper M. Psychophysiologie. In: Sturm W, Herrmann M, Wallesch CW (Eds.) Lehrbuch der Neuropsychologie, chapter 1.10. Amsterdam: Swets and Zeitlinger, 2000, pp. 154–68.

    Google Scholar 

  64. Passingham RE, Stephan KE, Kötter R. The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 2002;3:606–16.

    PubMed  CAS  Google Scholar 

  65. Büchel C, Dolan RJ, Armony JL, Friston KJ. Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. J Neurosci 1999;19:10869–76.

    PubMed  Google Scholar 

  66. Foerster F. On the problems of initial-value-dependencies and measurement of change. J Psychophysiol 1995;9:324–41.

    Google Scholar 

  67. Peper M, Herpers M, Spreer J, Hennig J, Zentner J. Functional neuroimaging studies of emotional learning and autonomic reactions. J Physiol Paris 2006;99:342–54.

    Article  PubMed  Google Scholar 

  68. Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 2002;26:321–52.

    Article  PubMed  Google Scholar 

  69. O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 2004;304:452–4.

    Article  PubMed  CAS  Google Scholar 

  70. Grandjean D, Sander D, Pourtois G, et al. The voices of wrath: Brain responses to angry prosody in meaningless speech. Nat Neurosci 2005;8:145–6.

    Article  PubMed  CAS  Google Scholar 

  71. Critchley H, Daly E, Phillips M, et al. Explicit and implicit neural mechanisms for processing of social information from facial expressions: A functional Magnetic Resonance Imaging study. Hum Brain Mapp 2000;9:93–105.

    Article  PubMed  CAS  Google Scholar 

  72. Hariri S, Bookheiner SY, Mazziotta JC. Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport 2000;11:43–8.

    Article  PubMed  CAS  Google Scholar 

  73. Furmark T, Fischer H, Wik G, Larsson M, Fredrikson M. The amygdala and individual differences in human fear conditioning. Neuroreport 1997;8:3957–60.

    Article  PubMed  CAS  Google Scholar 

  74. Canli T, Zhao Z, Desmond JE, Kang E, Gross J, Gabrieli JDE. An fMRI study of personality influences on brain reactivity to emotional stimuli. Behav Neurosci 2001;115:33–42.

    Article  PubMed  CAS  Google Scholar 

  75. Canli T, Sivers H, Whitfield SL, Gotlib IH, Gabrieli JDE. Amygdala response to happy faces as a function of extraversion. Science 2002;296:2191.

    Article  PubMed  CAS  Google Scholar 

  76. Schienle A, Schafer A, Stark R, Walter B, Vaitl D. Relationship between disgust sensitivity, trait anxiety and brain activity during disgust induction. Neuropsychobiology 2005;51:86–92.

    Article  PubMed  Google Scholar 

  77. Canli T, Amin Z. Neuroimaging of emotion and personality: Scientific evidence and ethical considerations. Brain Cogn 2002;50:414–31.

    Article  PubMed  Google Scholar 

  78. Small SL, Nusbaum HC. On the neurobiological investigation of language understanding in context. Brain Lang 2004;89:300–11.

    Article  PubMed  Google Scholar 

  79. Fahrenberg J, Myrtek M (Eds.) Progress in ambulatory assessment. Seattle, WA: Hogrefe and Huber, 2001.

    Google Scholar 

  80. Adolphs R. Neural systems for recognizing emotion. Curr Opin Neurobiol 2002;12:169–77.

    Article  PubMed  CAS  Google Scholar 

  81. Deichmann R, Josephs O, Hutton C, Corfield DR, Turner R. Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. NeuroImage 2002;15:120–35.

    Article  PubMed  CAS  Google Scholar 

  82. Yablonskiy DA. Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom study. Magn Reson Med 1998;39:417–28.

    Article  PubMed  CAS  Google Scholar 

  83. Lipschutz B, Friston KJ, Ashburner J, Turner R, Price CJ. Assessing study-specific regional variations in fMRI signal. Neuroimage 2001;13:392–8.

    Article  PubMed  CAS  Google Scholar 

  84. Toga AW, Thompson PM. Maps of the brain. Anat Rec 2001;265:37–53.

    Article  PubMed  CAS  Google Scholar 

  85. Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R. Image distortion correction in fMRI: A quantitative evaluation. NeuroImage 2002;16:217–40.

    Article  PubMed  Google Scholar 

  86. Raj D, Paley DP, Anderson AW, Kennan RP, Gore JC. A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging. Phys Med Biol 2000;45:3809–20.

    Article  PubMed  CAS  Google Scholar 

  87. Windischberger C, Langenberger H, Sycha T, et al. On the origin of respiratory artifacts in BOLD-EPI of the human brain. Magn Reson Imaging 2002;20:575–82.

    Article  PubMed  Google Scholar 

  88. Wise RG, Ide K, Poulin MJ, Tracey I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 2004;21:1652–64.

    Article  PubMed  Google Scholar 

  89. Dagli MS, Ingeholm JE, Haxby JV. Localization of cardiac-induced signal change in fMRI. Neuroimage 1999;9:407–15.

    Article  PubMed  CAS  Google Scholar 

  90. Critchley HD, Rotshtein P, Nagai Y, O’Doherty J, Mathias CJ, Dolan RJ. Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage 2005;24:751–62.

    Article  PubMed  Google Scholar 

  91. Frysinger RC, Harper RM. Cardiac and respiratory correlations with unit discharge in human amygdala and hippocampus. Electroencephalogr Clin Neurophysiol 1989;72:463–70.

    Article  PubMed  CAS  Google Scholar 

  92. Shmueli K, van Gelderen P, de Zwart JA, et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 2007;38:306–20.

    Article  PubMed  Google Scholar 

  93. Cohen MA, Taylor JA. Short-term cardiovascular oscillations in man: Measuring and modelling the physiologies. J Physiol 2002;542:669–83.

    Article  PubMed  CAS  Google Scholar 

  94. Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 2006;31:1536–48.

    Article  PubMed  Google Scholar 

  95. Edward V, Windischberger C, Cunnington R, et al. Quantification of fMRI artifact reduction by a novel plaster cast head holder. Hum Brain Mapp 2000;11:207–13.

    Article  PubMed  CAS  Google Scholar 

  96. Hajnal J, Myers R, Oatridge A, Schwieso J, Young I, Bydder G. Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 1994;31:283–91.

    Article  PubMed  CAS  Google Scholar 

  97. Field A, Yen Y, Burdette J, Elster A. False cerebral activation on BOLD functional MR images: Study of low-amplitude motion weakly correlated to stimulus. AJNR Am J Neuroradiol 2000;21:1388–96.

    PubMed  CAS  Google Scholar 

  98. Robinson S, Moser E. Positive results in amygdala fMRI: Emotion or head motion? NeuroImage 2004;22:S47, WE 294.

    Article  Google Scholar 

  99. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537–41.

    Article  PubMed  CAS  Google Scholar 

  100. Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 1998;7:119–32.

    Article  PubMed  CAS  Google Scholar 

  101. Fox MD, Snyder AZ, Zacks JM, Raichle ME. Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 2006;9:23–5.

    Article  PubMed  CAS  Google Scholar 

  102. Fox MD, Snyder AZ, Vincent JL, Raichle ME. Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 2007;56:171–84.

    Article  PubMed  CAS  Google Scholar 

  103. Beckmann CF, De Luca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001–13.

    Article  PubMed  Google Scholar 

  104. Damoiseaux JS, Rombouts SA, Barkhof F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 2006;103:13848–53.

    Article  PubMed  CAS  Google Scholar 

  105. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 2006;29:1359–67.

    Article  PubMed  CAS  Google Scholar 

  106. Robinson S, Soldati N, Basso G, et al. A resting state network in the basal ganglia. Proc Intl Soc Magn Res Med 2008;16:746.

    Google Scholar 

  107. Beckmann CF, Smith SM. Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage 2005;25:294–311.

    Article  PubMed  CAS  Google Scholar 

  108. Raichle M, MacLeod A, Snyder A, Powers W, Gusnard D, Shulman G. A default mode of brain function. Proc Natl Acad Sci US A 2001;98:676–82.

    Article  CAS  Google Scholar 

  109. Shulman G, Fiez J, Corbetta M, et al Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 1997;9:648–63.

    Article  Google Scholar 

  110. Merboldt KD, Fransson P, Bruhn H, Frahm J. Functional MRI of the human amygdala? Neuroimage 2001;14:253–7.

    Article  PubMed  CAS  Google Scholar 

  111. Triantafyllou C, Hoge RD, Krueger G, et al. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 2005;26:243–50.

    Article  PubMed  CAS  Google Scholar 

  112. Krasnow B, Tamm L, Greicius MD, et al. Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage 2003;18:813–26.

    Article  PubMed  CAS  Google Scholar 

  113. Dickerson BC, Wright CI, Miller S, et al. Ultrahigh-field differentiation of medial temporal lobe function: Sub-millimeter fMRI of amygdala and hippocampal activation at 7 Tesla. NeuroImage 2006;31:S154.

    Article  Google Scholar 

  114. Merboldt KD, Finsterbusch J, Frahm J. Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 2000;145:184–91.

    Article  PubMed  CAS  Google Scholar 

  115. Bellgowan PS, Bandettini PA, van Gelderen P, Martin A, Bodurka J. Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. Neuroimage 2006;29:1244–51.

    Article  PubMed  Google Scholar 

  116. Triantafyllou C, Hoge RD, Wald LL. Effect of spatial smoothing on physiological noise in high-resolution fMRI. Neuroimage 2006;32:551–7.

    Article  PubMed  Google Scholar 

  117. Robinson S, Windischberger C, Rauscher A, Moser E. Optimized 3 T EPI of the amygdalae. NeuroImage 2004;22:203–10.

    Article  PubMed  CAS  Google Scholar 

  118. Frahm J, Merboldt KD, Hänicke W. Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med 1988;6:474–80.

    Article  PubMed  CAS  Google Scholar 

  119. Deichmann R, Gottfried JA, Hutton C, Turner R. Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 2003;19:430–41.

    Article  PubMed  CAS  Google Scholar 

  120. Cho Z, Ro Y. Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med 1992;23:193–200.

    Article  PubMed  CAS  Google Scholar 

  121. Stenger VA, Boada FE, Noll DC. Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T(*)(2)-weighted functional MRI. Magn Reson Med 2000;44:525–31.

    Article  PubMed  CAS  Google Scholar 

  122. Yip CY, Fessler JA, Noll DC. Advanced three-dimensional tailored RF pulse for signal recovery in T2*-weighted functional magnetic resonance imaging. Magn Reson Med 2006;56:1050–9.

    Article  PubMed  Google Scholar 

  123. De Panfilis C, Schwarzbauer C. Positive or negative blips? The effect of phase encoding scheme on susceptibility-induced signal losses in EPI. Neuroimage 2005;25:112–21.

    Article  PubMed  Google Scholar 

  124. Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 1997;6:156–67.

    Article  PubMed  CAS  Google Scholar 

  125. Chen N, Dickey CC, Guttman CRG, Panych LP. Selection of voxel size and slice orientation for fMRI in the presence of susceptibility field gradients: Application to imaging of the amygdala. NeuroImage 2003;19:817–25.

    Article  PubMed  Google Scholar 

  126. Weiskopf N, Hutton C, Josephs O, Deichmann R. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T. Neuroimage 2006;33:493–504.

    Article  PubMed  Google Scholar 

  127. Young IR, Cox IJ, Bryant DJ, Bydder GM. The benefits of increasing spatial resolution as a means of reducing artifacts due to field inhomogeneities. Magn Reson Imaging 1988;6:585–90.

    Article  PubMed  CAS  Google Scholar 

  128. Hyde S, Biswal B, Jesmanowicz A. High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 2001;46:114–25.

    Article  PubMed  CAS  Google Scholar 

  129. Haacke E, Brown R, Thompson M, Venkatesan R. Magnetic resonance imaging: Physical principles and sequence design.New York, NY: Wiley-Liss, 1999.

    Google Scholar 

  130. Scouten A, Papademetris X, Constable RT. Spatial resolution, signal-to-noise ratio, and smoothing in multi-subject functional MRI studies. Neuroimage 2006;30:787–93.

    Article  PubMed  CAS  Google Scholar 

  131. Parrish T, Gitelman D, LaBar K, Mesulam M. Impact of signal-to-noise on functional MRI. Magn Reson Med 2000;44:925–32.

    Article  PubMed  CAS  Google Scholar 

  132. LaBar K, Gitelman D, Mesulam M, Parrish T. Impact of signal-to-noise on functional MRI of the human amygdala. Neuroreport 2001;12:3461–64.

    Article  PubMed  CAS  Google Scholar 

  133. Robinson S, Hoheisel B, Windischberger C, Habel U, Lanzenberger R, Moser E. FMRI of the emotions, towards an improved understanding of amygdala function. Curr Med Imaging Rev 2005;1:115–29.

    Article  Google Scholar 

  134. Morawetz C, Holz P, Lange C, et al. Improved functional mapping of the human amygdala using a standard functional magnetic resonance imaging sequence with simple modifications. Magn Reson Imaging 2008;26:45–53.

    Article  PubMed  Google Scholar 

  135. Stocker T, Kellermann T, Schneider F, et al. Dependence of amygdala activation on echo time: Results from olfactory fMRI experiments. Neuroimage 2006;30:151–9.

    Article  PubMed  Google Scholar 

  136. Gorno-Tempini M, Hutton C, Josephs O, Deichmann R, Price C, Turner R. Echo time dependence of BOLD contrast and susceptibility artifacts. NeuroImage 2002;15:136–42.

    Article  PubMed  Google Scholar 

  137. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591–603.

    Article  PubMed  CAS  Google Scholar 

  138. Pruessmann K, Weiger M, Scheidegger M, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952–62.

    Article  PubMed  CAS  Google Scholar 

  139. Lutcke H, Merboldt KD, Frahm J. The cost of parallel imaging in functional MRI of the human brain. Magn Reson Imaging 2006;24:1–5.

    Article  PubMed  Google Scholar 

  140. Schmidt CF, Degonda N, Luechinger R, Henke K, Boesiger P. Sensitivity-encoded (SENSE) echo planar fMRI at 3 T in the medial temporal lobe. NeuroImage 2005;25:625–41.

    Article  PubMed  Google Scholar 

  141. Fürsatz M, Windischberger C, Karlsson KÆ, Moser E. Successful fMRI of the hypothalamus at 3T. Proc Intl Soc Magn Reson Med 2008;16:2501.

    Google Scholar 

  142. Fürsatz M, Windischberger C, Karlsson KÆ, Mayr W, Moser E. Valence-dependent modulation of hypothalamic activity. Neuroimage in press.

    Google Scholar 

  143. Dowell NG, Tofts PS. Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 20907;58:622–30.

    Article  Google Scholar 

  144. Speck O, Hennig J. Functional imaging by I0- and T2*-parameter mapping using multi-image EPI. Magn Reson Med 1998;40:243–8.

    Article  PubMed  CAS  Google Scholar 

  145. Posse S, Wiese S, Gembris D, et al. Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. Magn Reson Med 1999;42:87–97.

    Article  PubMed  CAS  Google Scholar 

  146. Posse S, Shen Z, Kiselev V, Kemna LJ. Single-shot T(2)* mapping with 3D compensation of local susceptibility gradients in multiple regions. Neuroimage 2003;18:390–400.

    Article  PubMed  Google Scholar 

  147. Posse S, Holten D, Gao K, Rick J, Speck O. Evaluation of interleaved XYZ-shimming with multi-echo EPI in prefrontal cortex and amygdala at 4 Tesla. NeuroImage 2006;31:S154.

    Article  Google Scholar 

  148. Weiskopf N, Klose U, Birbaumer N, Mathiak K. Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 2005;24:1068–79.

    Article  PubMed  Google Scholar 

  149. Glover GH, Law CS. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med 2001;46:515–22.

    Article  PubMed  CAS  Google Scholar 

  150. Guo H, Song AW. Single-shot spiral image acquisition with embedded z-shimming for susceptibility signal recovery. J Magn Reson Imaging 2003;18:389–95.

    Article  PubMed  Google Scholar 

  151. Truong TK, Song AW. Single-shot dual-z-shimmed sensitivity-encoded spiral-in/out imaging for functional MRI with reduced susceptibility artifacts. Magn Reson Med 2008;59:221–7.

    Article  PubMed  Google Scholar 

  152. Li Z, Wu G, Zhao X, Luo F, Li SJ. Multiecho segmented EPI with z-shimmed background gradient compensation (MESBAC) pulse sequence for fMRI. Magn Reson Med 2002;48:312–21.

    Article  PubMed  Google Scholar 

  153. Weisskoff RM, Davis TL. Correcting gross distortion on echo planar images. Paper Presented at the SMRM, Berlin, 1992.

    Google Scholar 

  154. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995;34:65–73.

    Article  PubMed  CAS  Google Scholar 

  155. Jenkinson M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med 2003;49:193–7.

    Article  PubMed  Google Scholar 

  156. Witoszynskyj S, Rauscher A, Reichenbach JR, Barth M. ΠUN (Πhase UNwrapping) validation of a 2D region-growing phase unwrapping program. Proc Intl Soc Magn Reson Med 2007;15:3436.

    Google Scholar 

  157. Windischberger C, Robinson S, Rauscher A, Barth M, Moser E. Robust field map generation using a triple-echo acquisition. J Magn Reson Imaging 2004;20:730.

    Article  PubMed  Google Scholar 

  158. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192–225.

    Article  PubMed  CAS  Google Scholar 

  159. Bernstein MA, Grgic M, Brosnan TJ, Pelc NJ. Reconstructions of phase contrast, phased array multicoil data. Magn Reson Med 1994;32:330–4.

    Article  PubMed  CAS  Google Scholar 

  160. Hammond KE, Lupo JM, Xu D, et al. Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. Neuroimage 2008;39:1682–92.

    Article  PubMed  Google Scholar 

  161. Robinson S, Jovicich J. EPI distortion corrections at 4 T: Multi-channel field mapping and a comparison with the point-spread function method. Proc Intl Soc Magn Reson Med 2008;16:3031.

    Google Scholar 

  162. Robson MD, Gore JC, Constable RT. Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med 1997;38:733–40.

    Article  PubMed  CAS  Google Scholar 

  163. Zeng H, Constable RT. Image distortion correction in EPI: Comparison of field mapping with point spread function mapping. Magn Reson Med 2002;48:137–46.

    Article  PubMed  Google Scholar 

  164. Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: Fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 2004;52:1156–66.

    Article  PubMed  CAS  Google Scholar 

  165. Hu X, Kim SG. Reduction of signal fluctuation in functional MRI using navigator echoes. Magn Reson Med 1994;31:495–503.

    Article  PubMed  CAS  Google Scholar 

  166. Bruder H, Fischer H, Reinfelder HE, Schmitt F. Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 1992;23:311–23.

    Article  PubMed  CAS  Google Scholar 

  167. Barry RL, Klassen LM, Williams JM, Menon RS. Hybrid two-dimensional navigator correction: A new technique to suppress respiratory-induced physiological noise in multi-shot echo-planar functional MRI. Neuroimage 2008;39:1142–50.

    Article  PubMed  Google Scholar 

  168. Lund TE, Madsen KH, Sidaros K, Luo WL, Nichols TE. Non-white noise in fMRI: Does modelling have an impact? Neuroimage 2006;29:54–66.

    Article  PubMed  Google Scholar 

  169. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000;44:162–7.

    Article  PubMed  CAS  Google Scholar 

  170. Windischberger C, Friedreich S, Hoheisel B, Moser E. The importance of correcting for physiological artifacts for functional MRI in deep brain structures. NeuroImage 2004;22:S28.

    Google Scholar 

  171. Josephs O, Howseman A, Friston K, Turner R. Physiological noise modelling for multi-slice EPI fMRI using SPM. Proc Intl Soc Magn Reson Med 1997;5:1682.

    Google Scholar 

  172. Weissenbacher A, Windischberger C, Lanzenberger R, Moser E. Efficient correction for artificial signal fluctuations in resting-state fMRI-data. Proc Intl Soc Magn Reson Med 2008;16:2467.

    Google Scholar 

  173. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 2004;23:137–52.

    Article  PubMed  Google Scholar 

  174. Calhoun V, Adali T, Stevens M, Kiehl K, Pekar J. Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis. Neuroimage 2005;25:527–38.

    Article  PubMed  CAS  Google Scholar 

  175. Thomas CG, Harshman RA, Menon RS. Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 2002;17:1521–37.

    Article  PubMed  Google Scholar 

  176. Kochiyama T, Morita T, Okada T, Yonekura Y, Matsumura M, Sadato N. Removing the effects of task-related motion using independent-component analysis. Neuroimage 2005;25:802–14.

    Article  PubMed  Google Scholar 

  177. Perlbarg V, Bellec P, Anton JL, Pelegrini-Issac M, Doyon J, Benali H. CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components. Magn Reson Imaging 2007;25:35–46.

    Article  PubMed  Google Scholar 

  178. Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA. Automatic independent component labeling for artifact removal in fMRI. Neuroimage 2008;39:1227–45.

    Article  PubMed  Google Scholar 

  179. Bullmore ET, Brammer MJ, Rabe-Hesketh S, et al. Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Hum Brain Mapp 1999;7:38–48.

    Article  PubMed  CAS  Google Scholar 

  180. Morgan VL, Dawant BM, Li Y, Pickens DR. Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Comput Med Imaging Graph 2007;31:436–46.

    Article  PubMed  Google Scholar 

  181. Preibisch C, Raab P, Neumann K, et al. Event-related fMRI for the suppression of speech-associated artifacts in stuttering. Neuroimage 2003;19:1076–84.

    Article  PubMed  Google Scholar 

  182. Birn RM, Bandettini PA, Cox RW, Shaker R. Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 1999;7:106–14.

    Article  PubMed  CAS  Google Scholar 

  183. Phelps EA, O’Connor KJ, Cunningham WA, et al. Performance on indirect measures of race evaluation predicts amygdala activation. J Cogn Neurosci 2000;12:729–38.

    Article  PubMed  CAS  Google Scholar 

  184. Winston JS, Strange BA, O’Doherty J, Dolan RJ. Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nat Neurosci 2002;5:277–83.

    Article  PubMed  CAS  Google Scholar 

  185. Singer T, Kiebel SJ, Winston JS, Dolan RJ, Frith CD. Brain responses to the acquired moral status of faces. Neuron 2004;41:653–62.

    Article  PubMed  CAS  Google Scholar 

  186. Campbell DT, Stanley JC. Experimental and quasi-experimental designs for research. Boston: Houghton Mifflin, 1966.

    Google Scholar 

  187. Poldrack RA, Wagner AD. What can neuroimaging tell us about the mind? Insights from prefrontal cortex. Curr Dir Psychol Sci 2004;13:177–81.

    Article  Google Scholar 

  188. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001;412:150–7.

    Article  PubMed  CAS  Google Scholar 

  189. Janz C, Heinrich SP, Kornmayer J, Bach M, Hennig J. Coupling of neural activity and BOLD fMRI response: New insights by combination of fMRI and VEP experiments in transition from single events to continuous stimulation. Magn Reson Med 2001;46:482–6.

    Article  PubMed  CAS  Google Scholar 

  190. Baas D, Aleman A, Kahn RS. Lateralization of amygdala activation: A systematic review of functional neuroimaging studies. Brain Res Brain Res Rev 2004;4:96–103.

    Article  Google Scholar 

  191. Robinson S, Pripfl J, Bauer H, Moser M. Empirical evidence for the minimum voxel size required for reliable 3 T fMRI of the amygdala. NeuroImage 2005;26:S795.

    Google Scholar 

  192. Habel U, Windischberger C, Derntl B, et al. Amygdala activation and facial expressions: Explicit emotion discrimination versus implicit emotion processing. Neuropsychologia 2007;45:2369–77.

    Article  PubMed  Google Scholar 

  193. Sack AT, Linden DE. Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: Possibilities and limitations. Brain Res Brain Res Rev 2003;43:41–56.

    Article  PubMed  Google Scholar 

  194. Thayer JF, Brosschot JF. Psychosomatics and psychopathology: Looking up and down from the brain. Sychoneuroendocrinology 2005;30:1050–8.

    Article  Google Scholar 

Download references

Acknowledgments

The author’s own work reported in this chapter was supported by the Austria FWF grant P16669-B02, grant 11437 from the Austrian National Bank, the government of the Provincia Autonoma di Trento, Italy, the private foundation Fondazione Cassa di Risparmio di Trento e Rovereto, the University of Trento, Italy, and by grant Pe 499/3–2 from the Deutsche Forschungsgemeinschaft to MP. J. Jovicich is thanked for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Peper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Robinson, S., Moser, E., Peper, M. (2009). fMRI of Emotion. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics