Skip to main content

The Integron/Gene Cassette System: An Active Player in Bacterial Adaptation

  • Protocol
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 532))

Abstract

The integron includes a site-specific recombination system capable of integrating and expressing genes contained in structures called mobile gene cassettes. Integrons were originally identified on mobile elements from pathogenic bacteria and were found to be a major reservoir of antibiotic-resistance genes. Integrons are now known to be ancient structures that are phylogenetically diverse and, to date, have been found in approximately 9% of sequenced bacterial genomes. Overall, gene diversity in cassettes is extraordinarily high, suggesting that the integron/gene cassette system has a broad role in adaptation rather than being confined to simply conferring resistance to antibiotics. In this chapter, we provide a review of the integron/gene cassette system highlighting characteristics associated with this system, diversity of elements contained within it, and their importance in driving bacterial evolution and consequently adaptation. Ideas on the evolution of gene cassettes and gene cassette arrays are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collis, C., Hall, R. (1995) Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother 39, 155–162.

    CAS  PubMed  Google Scholar 

  2. Collis, C. M., Grammaticopoulos, G., Briton, J., Stokes, H. W., Hall, R. M. (1993) Site-specific insertion of gene cassettes into integrons. Mol Microbiol 9, 41–52.

    Article  CAS  PubMed  Google Scholar 

  3. Recchia, G. D., Hall, R. M. (1995) Gene cassettes, a new class of mobile element. Microbiology 141, 3015–3027.

    Article  CAS  PubMed  Google Scholar 

  4. Rowe-Magnus, D. A., Guerout, A.-M., Mazel, D. (1999) Super-integrons. Res Microbiol 150, 641–651.

    Article  CAS  PubMed  Google Scholar 

  5. Leverstein-van Hall, M. A., Paauw, A., Box, A. T. A., Blok, H. E. M., Verhoef, J., Fluit, A. C. (2002) Presence of integron-associated resistance in the community is widespread and contributes to multidrug resistance in the hospital. J Clin Microbiol 40, 3038–3040.

    Article  CAS  PubMed  Google Scholar 

  6. Leverstein-van Hall, M. A., Adrienne, T., A, Blok, H. E. M., Paauw, A., Fluit, A. C., Verhoef, J. (2002) Evidence of extensive interspecies transfer of integron-mediated antimicrobial resistance genes among multidrug-resistant Enterobacteriaceae in a clinical setting. J Infect Dis 186, 49–56.

    Article  CAS  PubMed  Google Scholar 

  7. Maguire, A. J., Brown, D. F. J., Gray, J. J., Desselberger, U. (2001) Rapid screening technique for class 1 integrons in Enterobacteriaceae and nonfermenting gram-negative bacteria and its use in molecular epidemiology. Antimicrob Agents Chemother 45, 1022–1029.

    Article  CAS  PubMed  Google Scholar 

  8. Martinez-Freijo, P., Fluit, A. C., Schmitz, F. J., Grek, V. S. C., Verhoef, J., Jones, M. E. (1998) Class 1 integrons in gram-negative isolates from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. J Antimicrob Chemother 42, 689–696.

    Article  CAS  PubMed  Google Scholar 

  9. Sallen, B., Rajoharison, A., Desvarenne, S., Mabilat, C. (1995) Molecular epidemiology of integron-associated antibiotic resistance genes in clinical isolates of Enterobacteriaceae. Microb Drug Resist 1, 195–202.

    Article  CAS  PubMed  Google Scholar 

  10. Tauch, A., Gotker, S., Puhler, A., Kalinowski, J., Thierbach, G. (2002) The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS 6100. Plasmid 48, 117–129.

    Article  CAS  Google Scholar 

  11. Shi, L., Zheng, M., Xiao, Z., Asakura, M., Su, J., Li, L., Yamasaki, S. (2006) Unnoticed spread of class 1 integrons in gram-positive clinical strains isolated in Guangzhou, China. Microbiol Immunol 50, 463–467.

    CAS  PubMed  Google Scholar 

  12. Nesvera, J., Hochmannova, J., Patek, M. (1998) An integron of class 1 is present on the plasmid pCG4 from a gram-positive bacterium Corynebacterium glutamicum.FEMS Microbiol Lett 169, 391–395.

    Article  CAS  PubMed  Google Scholar 

  13. Nandi, S., Maurer, J. J., Hofacre, C., Summers, A. O. (2004) Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci U S A 101, 7118–7122.

    Article  CAS  PubMed  Google Scholar 

  14. Xu, Z., Shi, L., Zhang, C., Zhang, L., Li, X., Cao, Y., Li, L., Yamasaki, S. (2007) Nosocomial infection caused by class 1 integron-carrying Staphylococcus aureus in a hospital in South China. Clin Microbiol Infect 13, 980–984.

    Article  CAS  PubMed  Google Scholar 

  15. Boucher, Y., Labbate, M., Koenig, J. E., Stokes, H. (2007) Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 15, 301–309.

    Article  CAS  PubMed  Google Scholar 

  16. Mazel, D. (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4, 608–620.

    Article  CAS  PubMed  Google Scholar 

  17. Stokes, H. W., Holmes, A. J., Nield, B. S., Holley, M. P., Nevalainen, K. M. H., Mabbutt, B. C., Gillings, M. R. (2001) Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl Environ Microbiol 67, 5240–5246.

    Article  CAS  PubMed  Google Scholar 

  18. Holmes, A. J., Gillings, M. R., Nield, B. S., Mabbutt, B. C., Nevalainen, K. M. H., Stokes, H. W. (2003) The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol 5, 383–394.

    Article  CAS  PubMed  Google Scholar 

  19. Stokes, H. W., O’Gorman, D. B., Recchia, G. D., Parsekhian, M., Hall, R. M. (1997) Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol 26, 731–745.

    Article  CAS  PubMed  Google Scholar 

  20. MacDonald, D., Demarre, G., Bouvier, M., Mazel, D., Gopaul, D. N. (2006) Structural basis for broad DNA-specificity in integron recombination. Nature 440, 1157–1162.

    Article  CAS  PubMed  Google Scholar 

  21. Rowe-Magnus, D. A., Guerout, A.-M., Ploncard, P., Dychinco, B., Davies, J., Mazel, D. (2001) The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc Natl Acad Sci U S A 98, 652–657.

    Article  CAS  PubMed  Google Scholar 

  22. Paulsen, I. T., Littlejohn, T. G., Rådstrom, P., Sundström, L., Sköld, O., Swedberg, G., Skurray, R. A. (1993) The 3′ conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother 37, 761–768.

    CAS  PubMed  Google Scholar 

  23. Sundström, L., Rådstrom, P., Swedberg, G., (1988) Site-specific recombination promotes linkage between trimethoprim- and sulfonamide-resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn 21. Mol Gen Genet 213, 191–201.

    Article  Google Scholar 

  24. Kholodii, G. Y., Mindlin, S. Z., Bass, I. A., Yurieva, O. V., Minakhina, S. V., Nikiforov, V. G. (1995) Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol 17, 1189–1200.

    Article  CAS  PubMed  Google Scholar 

  25. Brown, H. J., Stokes, H. W., Hall, R. M. (1996) The integrons In0, In2 and In5 are defective transposon derivatives. J Bacteriol 178, 4429–4437.

    CAS  PubMed  Google Scholar 

  26. Rådstrom, P., Sköld, O., Swedberg, G., Flensburg, J., Roy, P.H., Sundström, L. (1994) Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol 176, 3257–3268.

    PubMed  Google Scholar 

  27. Kamali-Moghaddam, M., Sundström, L. (2000) Transposon targeting determined by resolvase. FEMS Microbiol. Lett. 186, 55–59.

    Article  CAS  PubMed  Google Scholar 

  28. Partridge, S. R., Recchia, G. D., Stokes, H. W., Hall, R. M. (2001) Family of class 1 integrons related to In4 from Tn1 696. Antimicrob Agents Chemother 45, 3014–3020.

    Article  CAS  PubMed  Google Scholar 

  29. Stokes, H. W., Nesbø, C., L, Holley, M., Bahl, I. M., Gillings, M. R., Boucher, Y. (2006) Class 1 integrons potentially predating the association with Tn402-like transposition genes are present in a sediment microbial community. J Bacteriol 188, 5722–5730.

    Article  CAS  PubMed  Google Scholar 

  30. Collis, C. M., Kim, M.-J., Partridge, S. R., Stokes, H. W., Hall, R. M. (2002) Characterization of the class 3 integron and the site-specific recombination system it determines. J Bacteriol 184, 3017–3026.

    Article  CAS  PubMed  Google Scholar 

  31. Arakawa, Y., Murakami, M., Suzuki, K., Ito, H., Wacharotayankun, E., Ohsuka, S., Kato, N., Ohta, M. (1995) A novel integron-like element carrying the metallo-B-lactamase gene bla–IMP–. Antimicrob Agents Chemother 39, 1612–1615.

    CAS  PubMed  Google Scholar 

  32. Correia, M., Boavida, F., Grosso, F., Salgado, M. J., Lito, L. M., Cristino, J. M., Mendo, S., Duarte, A. (2003) Molecular characterization of a new class 3 integron in Klebsiella pneumoniae. Antimicrob Agents Chemother 47, 2838–2843.

    Article  CAS  PubMed  Google Scholar 

  33. Xu, H., Davies, J., Miao, V. (2007) Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol 189, 6276–6283.

    Article  CAS  PubMed  Google Scholar 

  34. Hansson, K., Sundström, L., Pelletier, A., Roy, P. H. (2002) IntI2 integron integrase in Tn 7. J Bacteriol 184, 1712–1721.

    Article  CAS  PubMed  Google Scholar 

  35. Biskri, L., Mazel, D. (2003) Erythromycin esterase gene ere(A) is located in a functional gene cassette in an unusual class 2 integron. Antimicrob Agents Chemother 47, 3326–3331.

    Article  CAS  PubMed  Google Scholar 

  36. Ramirez, M. S., Quiroga, C., Centrón, D. (2005) Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumanii. Antimicrob Agents Chemother 49, 5179–5181.

    Article  CAS  PubMed  Google Scholar 

  37. Ramirez, M. S., Vargas, L. J., Cagnoni, V., Tokumoto, M., Centrón, D. (2005) Class 2 integron with a novel cassette array in a Burkholderia cenocepacia isolate. Antimicrob Agents Chemother 49, 4418–4420.

    Article  CAS  PubMed  Google Scholar 

  38. Ahmed, A. M., Nakano, H., Shimamoto, T. (2005) Molecular characterization of integrons in non-typhoid Salmonella serovars isolated in Japan: description of an unusual class 2 integron. Antimicrob Agents Chemother 55, 371–374.

    Article  CAS  Google Scholar 

  39. Heikkilä, E., Sundström, L., Skurnik, M., Houvinen, P. (1991) Analysis of genetic localization of the type 1 trimethoprim resistance gene from Escherichia coli isolated in Finland. Antimicrob Agents Chemother 35, 1562–1569.

    PubMed  Google Scholar 

  40. Lichtenstein, C., Brenner, S. (1982) Unique insertion site of Tn7 in the E. coli chromosome. Nature 297, 601–603.

    Article  CAS  PubMed  Google Scholar 

  41. Wolkow, C. A., DeBoy, R. T., Craig, N. L. (1996) Conjugative plasmids are preferred targets for Tn 7. Genes Dev 10, 2145–2157.

    Article  CAS  PubMed  Google Scholar 

  42. Barlow, R. S., Gobius, K. S. (2006) Diverse class 2 integrons in bacteria from beef cattle sources. J Antimicrob Chemother 58, 1133–1138.

    Article  CAS  PubMed  Google Scholar 

  43. Hochhut, B., Lotfi, Y., Mazel, D., Faruque, S. M., Woodgate, R., Waldor, M. K. (2001) Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother 45, 2991–3000.

    Article  CAS  PubMed  Google Scholar 

  44. Sørum, H., Roberts, M. C., Crosa, J. H. (1992) Identification and cloning of a tetracycline resistance gene from the fish pathogen Vibrio salmonicida. Antimicrob Agents Chemother 36, 611–615.

    Google Scholar 

  45. Szekeres, S., Dauti, M., Wilde, C., Mazel, D., Rowe-Magnus, D. A. (2007) Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Mol Microbiol 63, 1588–1605.

    Article  CAS  PubMed  Google Scholar 

  46. Biskri, L., Bouvier, M., Guérout, A.-M., Boisnard, S., Mazel, D. (2005) Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J Bacteriol 187, 1740–1750.

    Article  CAS  PubMed  Google Scholar 

  47. Vaisvila, R., Morgan, R. D., Posfai, J., Raleigh, E. A. (2001) Discovery and distribution of super-integrons among Pseudomonads. Mol Microbiol 42, 587–601.

    Article  CAS  PubMed  Google Scholar 

  48. Holmes, A. J., Holley, M. P., Mahon, A., Nield, B., Gillings, M., Stokes, H. W. (2003) Recombination activity of a distinctive integron-gene cassette system associated with Pseudomonas stutzeri populations in soil. J Bacteriol 185, 918–928.

    Article  CAS  PubMed  Google Scholar 

  49. Engelberg-Kulka, H., Glaser, G. (1999) Addiction modules and programmed cell death and antideath in bacteria cultures. Ann Rev Microbiol 53, 43–70.

    Article  CAS  Google Scholar 

  50. Prakash, D. P., Gerdes, K. (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucl Acids Res 33, 966–976.

    Article  Google Scholar 

  51. Labbate, M., Boucher, Y., Joss, M. J., Michael, C. A., Gillings, M. R., Stokes, H. W. (2007) Use of chromosomal integron arrays as a phylogenetic typing system for Vibrio cholerae pandemic strains. Microbiology 153, 1488–1498.

    Article  CAS  PubMed  Google Scholar 

  52. Rowe-Magnus, D. A., Guerout, A.-M., Biskri, L., Bouige, P., Mazel, D. (2003) Comparative analysis of superintegrons: Engineering extensive genetic diversity in the Vibrionaceae. Genome Res 13, 428–442.

    Article  CAS  PubMed  Google Scholar 

  53. Gillings, M. R., Holley, M. P., Stokes, H. W., Holmes, A. J. (2005) Integrons in Xanthomonas: A source of species genome diversity. Proc Nat Acad Sci U S A 102, 4419–4424.

    Article  CAS  Google Scholar 

  54. Coleman, N., Tetu, S., Wilson, N., Holmes, A. (2004) An unusual integron in Treponema denticola. Microbiology 150, 3524–3526.

    Article  CAS  PubMed  Google Scholar 

  55. Demarre, G., Frumerie, C., Gopaul, D. N., Mazel, D. (2007) Identification of key structural determinants of the IntI1 integron integrase that influence attC × attI1 recombination efficiency. Nucl Acids Res 35, 6475–6489.

    Article  CAS  PubMed  Google Scholar 

  56. Hall, R. M., Brookes, D. E., Stokes, H. W. (1991) Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol 5, 1941–1959.

    Article  CAS  PubMed  Google Scholar 

  57. Gravel, A., Messier, N., Roy, P. H. (1998) Point mutations in the integron integrase IntI1 that affect recombination and/or substrate recognition. J Bacteriol 180, 5437–5442.

    CAS  PubMed  Google Scholar 

  58. Melano, R. G., Petroni, A., Garutti, A., Saka, H., A, Mange, L., Pasterán, F., Rapoport, M., Rossi, A., Galas, M. (2002) New carbenicillin-hydrolyzing ×-lactamase (CARB-7) from Vibrio cholerae non-O1, non-0139 strains encoded by the VCR region of the V. cholerae genome. Antimicrob Agents Chemother 46, 2162–2168.

    Article  CAS  PubMed  Google Scholar 

  59. Petroni, A., Melano, R. G., Saka, H., A, Garutti, A., Mange, L., Pasterán, F., Rapoport, M., Miranda, M., Faccone, D., Rossi, A., Hoffman, P. S., Galas, M. F. (2004) CARB-9, a carbenicillinase encoded in the VCR region of Vibrio cholerae non-01, non-0139 belongs to a family of cassette-encoded ×-lactamases. Antimicrob Agents Chemother 48, 4042–4046.

    Article  CAS  PubMed  Google Scholar 

  60. Rowe-Magnus, D. A., Guerout, A.-M., Mazel, D. (2002) Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol Microbiol 43, 1657–1669.

    Article  CAS  PubMed  Google Scholar 

  61. Recchia, G. D., Hall, R. M. (1997) Origins of the mobile gene cassettes found in integrons. Trends Microbiol 5, 389–394.

    Article  CAS  PubMed  Google Scholar 

  62. Boucher, Y., Nesbo, C., Joss, M., Robinson, A., Mabbutt, B., Gillings, M., Doolittle, W. F., Stokes, H. (2006) Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio. BMC Evol Biol 6, 3.

    Article  PubMed  Google Scholar 

  63. Centrón, D., Roy, P. H. (2002) Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion. Antimicrob Agents Chemother 46, 1402–1409.

    Article  PubMed  Google Scholar 

  64. Léon, G., Roy, P. H. (2003) Excision and integration of cassettes by an integron integrase of Nitrosomonas europaea. J Bacteriol 185, 2036–2041.

    Article  PubMed  Google Scholar 

  65. Dai, L., Zimmerly, S. (2002) Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behaviour. Nucl Acids Res 30, 1091–1102.

    Article  CAS  PubMed  Google Scholar 

  66. Sunde, M. (2005) Class 1 integron with a group II intron detected in an Escherichia coli strain from a free-range reindeer. Antimicrob Agents Chemother 49, 2512–2514.

    Article  CAS  PubMed  Google Scholar 

  67. Michael, C. A., Gillings, M. R., Holmes, A. J., Hughes, L., Andrew, N. R., P, H. M., Stokes, H. W. (2004) Mobile gene cassettes: a fundamental resource for bacterial evolution. Am Nat 164, 1–12.

    Article  PubMed  Google Scholar 

  68. Ogawa, A., Takeda, T. (1993) The gene encoding the heat-stable enterotoxin of Vibrio cholerae is flanked by 123-bp direct repeats. Microbiol Immunol 37, 607–616.

    CAS  PubMed  Google Scholar 

  69. Franzon, V., L, Barker, A., Manning, P. (1993) Nucleotide sequence encoding the mannose-fucose-resistant hemagglutinin of Vibrio cholerae O1 and construction of a mutant. Infect Immun 61, 3032–3037.

    CAS  PubMed  Google Scholar 

  70. Barker, A., Clark, C. A. (1994) Identification of VCR, a repeated sequence associated with a locus encoding a hemagglutinin in Vibrio cholerae O1. J Bacteriol 176, 5450–5458.

    CAS  PubMed  Google Scholar 

  71. Barker, A., Manning, P. A. (1997) VlpA of Vibrio cholerae O1: the first bacterial member of the alpha 2-microglobulin lipocalin superfamily. Microbiology 143, 1805–1813.

    Article  CAS  PubMed  Google Scholar 

  72. Kim, Y. R., Lee, S. E., Kim, C. M., Kim, S. Y., Shin, E. K., Shin, D. H., Chung, S. S., Choy, H. E., Progulske-Fox, A., Hillman, J. D., Handfield, M., Rhee, J. H. (2003) Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71, 5461–5471.

    Article  CAS  PubMed  Google Scholar 

  73. Lee, J. H., Yang, S.-T., Rho, S.-H., Im, Y. J., Kim, S. Y., Kim, Y. R., Kim, M.-K., Kang, G. B., Kim, J. I., Rhee, J. H., Eom, S. H. (2006) Crystal structure and functional studies reveal that PAS factor from Vibrio vulnificus is a novel member of the Saposin-fold family. J Mol Biol 355, 491–500.

    Article  CAS  PubMed  Google Scholar 

  74. Robinson, A., Guilfoyle, A. P., Harrop, S. J., Boucher, Y., Stokes, H. W., Curmi, P. M., Mabbutt, B. C. (2007) A putative house-cleaning enzyme encoded within an integron array: 1.8 Å crystal structure defines a new MazG subtype. Mol Microbiol 66, 610–621.

    Article  CAS  PubMed  Google Scholar 

  75. Elsaied, H., Stokes, H. W., Nakamura, T., Kitamura, K., Fuse, H., Maruyama, A. (2001) Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Environ Microbiol 9, 2298–2312.

    Article  Google Scholar 

  76. Nemergut, D. R., Martin, A. P., Schmidt, S. K. (2004) Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 70, 1160–1168.

    Article  CAS  PubMed  Google Scholar 

  77. Hayward, A. C. (1993) The Hosts of Xanthomonas. (J. G. Swings and E. L. Civerolo), Chapman & Hall, London, 1–17.

    Google Scholar 

  78. Coleman, N. V., Holmes, A. J. (2005) The nativePseudomonas stutzeri strain Q chromosomal integron can capture and express cassette-associated genes. Microbiology 151, 1853–1864.

    Article  CAS  PubMed  Google Scholar 

  79. Yildiz, F. H., Liu, X. S., Heydorn, A., Schoolnik, G. K. (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53, 497–515.

    Article  CAS  PubMed  Google Scholar 

  80. Hughes, A. L. (2005) Gene duplication and the origin of novel proteins. Proc Natl Acad Sci U S A 102, 8791–8792.

    Article  CAS  PubMed  Google Scholar 

  81. Nass, T., Mikami, Y., Imai, T., Poirel, L., Nordmann, P. (2001) Characterization of In53, a class 1 plasmid- and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes. J Bacteriol 183, 235–249.

    Article  Google Scholar 

  82. Tetu, S. G., Holmes, A. J. (2008) A family of insertion sequences that impacts integrons by specific targeting of gene cassette recombination sites, the IS1111-attc group. J Bacteriol 190, 4959–4970.

    Article  CAS  PubMed  Google Scholar 

  83. Robinson, A., Wu, P. S., Harrop, S. J., Schaeffer, P. M., Dosztányi, Z., Gillings, M. R., Holmes, A. J., Nevalainen, K. M., Stokes, H. W., Otting, G., Dixon, N. E., Curmi, P. M., Mabbutt, B. C. (2005) Integron-associated mobile gene cassettes code for folded proteins: the structure of Bal32a, a new member of the adaptable alpha β barrel family. J Mol Biol 346, 1229–1241.

    Article  CAS  PubMed  Google Scholar 

  84. Nield, B. S., Willows, R. D., Torda, A. E., Gillings, M. R., Holmes, A. J., Nevalainen, K. M. H., Stokes, H. W., Mabbutt, B. C. (2004) New enzymes from environmental cassette arrays: Functional attributes of a phosphotransferase and an RNA-methyltransferase. Protein Sci 13, 1651–1659.

    Article  CAS  PubMed  Google Scholar 

  85. Cameron, F. H., Groot Obbink, D. J., Ackerman, V. P., Hall, R. M. (1986) Nucleotide sequence of the AAD(2″) aminoglycoside adenyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrII in R388. Nucl Acids Res 14, 8625– 8635.

    Article  CAS  PubMed  Google Scholar 

  86. Rowe-Magnus, D. A., Mazel, D. (1999) Resistance gene capture. Curr Opin Microbiol 2, 483–488.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Labbate, M., Case, R.J., Stokes, H.W. (2009). The Integron/Gene Cassette System: An Active Player in Bacterial Adaptation. In: Gogarten, M.B., Gogarten, J.P., Olendzenski, L.C. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 532. Humana Press. https://doi.org/10.1007/978-1-60327-853-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-853-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-852-2

  • Online ISBN: 978-1-60327-853-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics