Skip to main content

Pathobiology of Diabetic Encephalopathy in Animal Models

  • Chapter
  • First Online:
Diabetes and the Brain

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

This review will compare longitudinally the cognitive deficits and associated metabolic and structural abnormalities in two models with spontaneous onset of type 1 and type 2 diabetes, respectively. From these studies it is becoming increasingly evident that the cerebral dysmetabolism differs in many respects as to underlying mechanisms leading up to progressive cognitive dysfunction, although mechanistic overlaps exist between the two models. In the type 1 model, insulin deficiency appears to play a prominent role in degenerative and apoptotic phenomena of neuronal populations and white matter constituents. In these processes, undoubtedly, hyperglycemia and its downstream metabolic aberrations are also active participants.

In the type 2 model, which reflects closely the situation in human type 2 diabetes, the underlying mechanisms appear more complex and are likely to include components of the metabolic syndrome such as hypercholesterolemia and hypertension. This model displays increased activity of the amyloidogenic processing of APP with subsequent accumulation of A(amyloid)β products. This together with central insulin resistance is likely to be responsible for increased presence of hyperphosphorylated tau. Hence, in this model similarities with factors responsible for the progressive degenerative changes characterizing Alzheimer’s disease are obvious. Although information to date is rather limited in genetically unmanipulated models of diabetes, available information stresses differences in the pathogeneses responsible for diabetic encephalopathy in the two types of diabetes will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sima AAF, Kamiya H, Li ZG. Insulin, C-peptide hyperglycemia and central nervous system complications in diabetes. Europ J Pharmacol 2004; 490:187–197.

    CAS  Google Scholar 

  2. Biessels GJ. Diabetic encephalopathy. In: Veves A, Malik RA eds. Diabetic Neuropathy, Clinical Management. Totowa, NJ: Humana Press; 2007:187–205.

    Google Scholar 

  3. Biessels GJ, Cristino NA, Rutten G, Hamers FPT, Erkelens DW, Gispen WH. Neurophysiological changes in the central and peripheral nervous system of streptozotocin-diabetic rats: course of development and effect of insulin treatment. Brain 1999; 122:757–768.

    PubMed  Google Scholar 

  4. Sima AAF, Zhang W, Li ZG, Kamiya H. The effects of C-peptide on type 1 diabetic polyneuropathies and encephalopathy in the BB/Wor-rat. Exp Diab Res 2008:ID 230458, 13pp. (online publ.).

    Google Scholar 

  5. Sima AAF, Zhang W, Kamiya H. Metabolic-functional-structural correlations in somatic neuropathies in the spontaneously type 1 and type 2 diabetic BB-rats. In: Veves A, Malik RA, eds. Diabetic Neuropathy, Clinical Management. Totowa, NJ: Humana Press; 2007:133–152.

    Google Scholar 

  6. Sima AAF. Heterogeneity of diabetic neuropathy. Frontiers of Bioscience 2008; 13:4809–4816.

    CAS  Google Scholar 

  7. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and risk of dementia: the Rotterdam study. Neurology 1999; 58:1937–1941.

    Google Scholar 

  8. Arvanitakis Z, Wilson RS, Bievias JL, Evans DA, Bennett DA. Alzheimer’s disease and decline in cognitive function. Arch Neurol 2004; 61:661–666.

    PubMed  Google Scholar 

  9. Ryan CM. Why is cognitive dysfunction associated with the development of diabetes early in life? The diathesis hypothesis. Pediatr Diab 2006; 7:289–297.

    Google Scholar 

  10. Brands AMA, Biessels GJ, de Haan EHF, Kappelle LJ, Kessels RPC. The effects of type 1 diabetes on cognitive performance. A meta-analysis. Diabetes Care 2005; 28:726–735.

    PubMed  Google Scholar 

  11. Biessels GJ, Kamal A, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res 1998; 800:125–135.

    PubMed  CAS  Google Scholar 

  12. Li Z, Zhang W, Grunberger G, Sima AAF. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res 2002; 946:212–231.

    Google Scholar 

  13. Sima AAF, Li ZG. The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetes. Diabetes 2005; 54:1497–1505.

    PubMed  CAS  Google Scholar 

  14. Li ZG, Zhang W, Sima AAF. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 2007; 56:1817–1824.

    PubMed  CAS  Google Scholar 

  15. Kramer L, Fasching P, Madl C, et al. Previous episodes of hypoglycemic coma are not associated with permanent cognitive brain dysfunction in IDDM patients on intensive insulin treatment. Diabetes 1998; 47:1909–1914.

    PubMed  CAS  Google Scholar 

  16. Diabetes Control and Complications Trial Research Group. Effects of intensive diabetes therapy on neuropsychological function in adults in the Diabetes Control and Complications Trial. Ann Intern Med 1996; 124:379–388.

    Google Scholar 

  17. Reichard P, Pihl M. Mortality and treatment side-effects during long-term intensified conventional insulin treatment in the Stockholm Diabetes Intervention Study. Diabetes 1994; 43:313–317.

    PubMed  CAS  Google Scholar 

  18. Rovet JF, Ehrlich RM, Hoppe MG. Intellectual deficits associated with the early onset of insulin-dependent diabetes mellitus in children. Diabetes Care 1987; 10:510–515.

    PubMed  CAS  Google Scholar 

  19. Dobbing J, Sands J. Vulnerability of developing brain. IX. The effect of nutritional growth retardation on the timing of brain growth spurt. Biol Neonate 1971; 19:363–378.

    PubMed  CAS  Google Scholar 

  20. Schoenle EJ, Schoenle D, Molinari L, Largo RH. Impaired intellectual development in children with type 1 diabetes: association with HbA1c, age at diagnosis and sex. Diabetologia 2002; 45:108–114.

    PubMed  CAS  Google Scholar 

  21. Ryan CM, Geckle MO, Orchard TJ. Cognitive efficiency declines over time in adults with type 1 diabetes: effects of micro- and macrovascular complications. Diabetologia 2003; 46:940–948.

    PubMed  CAS  Google Scholar 

  22. Li ZG, Zhang W, Sima AAF. The role of impaired insulin/IGF action in primary diabetic encephalopathy. Brain Res 2005; 1037:12–24.

    PubMed  CAS  Google Scholar 

  23. Li ZG, Zhang W, Sima AAF. C-peptide enhances insulin-mediated cell growth and protection against high glucose induced apoptosis in SH-SY5Y cells. Diab Metab Res Rev 2003; 19:375–385.

    Google Scholar 

  24. Li ZG, Sima AAF. C-peptide and CNS complications in diabetes. Exp Diab Res 2004; 5:79–90.

    Google Scholar 

  25. Brands AMA, Kessels RPC, de Haan EHF, Kappelle LJ, Biessels GJ. Cerebral dysfunction in type 1 diabetes: effects of insulin, vascular risk factors and blood glucose levels. Eur J Pharmacol 2004; 490:159–168.

    PubMed  CAS  Google Scholar 

  26. Zhao WQ, Chen H, Quon MJ, Alkou DL. Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol 2004; 490:71–81.

    PubMed  CAS  Google Scholar 

  27. Wozniak M, Rydzewski B, Baker SP, Raijada MK. The cellular and physiological action of insulin in the central nervous system. Neurochem Int 1993; 22:1–10.

    PubMed  CAS  Google Scholar 

  28. Park CR. Cognitive effects of insulin in the central nervous system. Neurosci Biobehav Rev 2001; 25:311–323.

    PubMed  CAS  Google Scholar 

  29. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL. Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 2001; 74:270–280.

    PubMed  CAS  Google Scholar 

  30. Northam EA, Anderson PJ, Jacobs R, Hughes M, Warne GL, Werther GA. Neuropsychological profiles of children with type 1 diabetes 6 years after disease onset. Diabetes Care 2001; 24:1541–1546.

    PubMed  CAS  Google Scholar 

  31. Bjorgaas M, Gimse R, Vik T, Sand T. Cognitive function in type 1 diabetic children with and without episodes of severe hypoglycemia. Acta Paediatr 1997; 86:148–153.

    PubMed  CAS  Google Scholar 

  32. Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes and cognitive function. J Clin Exp Neuropsychol 2004; 26:1044–1080.

    PubMed  Google Scholar 

  33. Peila R, Rodriquez BL, Lanner LJ. Type 2 diabetes, APOE gene and risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002; 51:1256–1262.

    PubMed  CAS  Google Scholar 

  34. Yoshitake T, Kiyohara Y, Kato I, et al. Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population. The Hisayama Study. Neurology 1995; 445:1161–1168.

    Google Scholar 

  35. Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O’Brien PC, Palumbo PJ. The risk of dementia among persons with diabetes mellitus: a population-based cohort study. Ann NY Acad Sci 1997; 26:422–427.

    Google Scholar 

  36. Mordes JP, Bortell R, Groen H, Guberski D, Rossini AA, Greiner DL. Autoimmune diabetes mellitus in the BB rat. In: Sima AAF, Shafrir E eds. Animal Models of Diabetes. A Primer. Amsterdam: Harwood Acad. Publ.; 2001:1–42.

    Google Scholar 

  37. Sima AAF, Zhang WX, Cherian PV, Chakrabarti S. Impaired visual evoked potentials and primary axonopathy of the optic nerve in the diabetic BB/W-rat. Diabetologia 1992; 35:602–607.

    PubMed  CAS  Google Scholar 

  38. Chakrabarti S, Zhang WX, Sima AAF. Optic neuropathy in the diabetic BB-rat. Nervous system and fuel hemostatis. Adv Exp Biol Med 1991; 291:257–264.

    CAS  Google Scholar 

  39. Sima AAF, Yagihashi S. Central-peripheral distal axonopathy in the spontaneously diabetic BB-rat: Ultrastructural and morphometric findings. Diab Res Clin Prac 1986; 1:289–298.

    CAS  Google Scholar 

  40. Kamijo M, Cherian PV, Sima AAF. The preventive effect of aldose reductase inhibition on diabetic optic neuropathy in the BB/W-rat. Diabetologia 1993; 36:893–898.

    PubMed  CAS  Google Scholar 

  41. Gispen WH, Biessels GJ. Cognition and synaptic plasticity in diabetes. Trends Neurosci 2000; 23:542–549.

    PubMed  CAS  Google Scholar 

  42. Flood JF, Mooriadian AD, Morley JE. Characteristics of learning and memory in streptozotocin-induced diabetic mice. Diabetes 1990; 39:1391–1398.

    PubMed  CAS  Google Scholar 

  43. Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RG. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 1995; 378:182–186.

    PubMed  CAS  Google Scholar 

  44. Sima AAF, Zhang W, Hoffman W. Apoptosis of oligodendroglia cells contribute to white matter changes in type 1 diabetic encephalopathy. Neurodiab Orvieto, Italy; 2008.

    Google Scholar 

  45. Sima AAF, Zhang WX, Sugimoto K, et al. C-peptide prevents and improves chronic type 1 diabetic neuropathy in the BB/Wor-rat. Diabetologia 2001; 44:889–897.

    PubMed  CAS  Google Scholar 

  46. Grunberger G, Qiang X, Li ZG, et al. Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 2001; 44:1247–1257.

    PubMed  CAS  Google Scholar 

  47. Shafqat J, Melles E, Sigmundsson K, et al. Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects. Cell Mol Life Sci 2006; 63:1805–1811.

    PubMed  CAS  Google Scholar 

  48. Bliss TV, Collingridge GL. A synaptic model of memory: long term potentiation in the hippocampus. Nature 1993; 361:31–39.

    PubMed  CAS  Google Scholar 

  49. Kamal A, Biessels GJ, Urban IJ, Gispen WH. Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of long-term depression. Neuroscience 1999; 90:737–745.

    PubMed  CAS  Google Scholar 

  50. Grzeda E, Wiśniewska RJ, Wiśniewski K. Effect of an NMDA receptor agonist on T-maze and passive avoidance test in 12-week streptozotocin-induced diabetic rats. Pharmacol Rep 2007; 59(6):656–663.

    PubMed  CAS  Google Scholar 

  51. Chabot C, Massicotte G, Milot M, Trudeau F, Gagné J. Impaired modulation of AMPA receptors by calcium-dependent processes in streptozotocin-induced diabetic rats. Brain Res 1997; 768:249–256.

    PubMed  CAS  Google Scholar 

  52. de Mendonca A, Ribeiro JA. Endogenous adenosine modulates long-term potentiation in the hippocampus. Neuroscience 1994; 62:385–390.

    PubMed  Google Scholar 

  53. Gagné J, Milot M, Gélinas S, et al. Binding properties of glutamate receptors in streptozotocin-induced diabetes in rats. Diabetes 1997; 46:841–846.

    PubMed  Google Scholar 

  54. Biessels GJ, ter Laak MP, Kamal A, Gispen WH. Effects of the Ca(2+) antagonist nimodipine on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. Brain Res 2005; 1035 (1):86–93.

    PubMed  CAS  Google Scholar 

  55. Sima AAF, Kamiya H. Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes? Current Drug Targets 2008; 49:37–46.

    Google Scholar 

  56. Choeiri C, Stoines W, Miki T, Seino S, Messier C. Glucose transporter plasticity during memory processing. Neuroscience 2005; 130:591–600.

    PubMed  CAS  Google Scholar 

  57. Sredy J, Sawicki DR, Notvest RR. Polyol pathway activity in nervous tissues of diabetic and galactose-fed rats: effect of dietary galactose withdrawal or tolrestat intervention therapy. J Diab Comp 1991; 5:2–7.

    Google Scholar 

  58. Ryle C, Leow CK, Donaghy M. Non-enzymatic glycation of peripheral and central nervous system proteins in experimental diabetes mellitus. Muscle Nerve 1997; 20:577–584.

    PubMed  CAS  Google Scholar 

  59. Aragano M, Mastrocola R, Medana C, et al. Upregulation of advanced glycated products receptor in the brain of diabetic rats is prevented by antioxidant treatment. Endocrinology 2005; 146:5561–5567.

    Google Scholar 

  60. Kumar JS, Menon VP. Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism 1993; 42:1435–1439.

    PubMed  CAS  Google Scholar 

  61. Pop-Busui R, Sima AAF, Stevens M. Oxidative stress and diabetic neuropathy. Diab Metab Res Rev 2006; 22:257–273.

    CAS  Google Scholar 

  62. Mooradian AD, Haas MJ, Batejko O, Hovsepyan M, Feman SS. Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats. Diabetes 2005; 54(10):2977–2982.

    PubMed  CAS  Google Scholar 

  63. Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 2007; 45(1):202–211.

    Google Scholar 

  64. Huber JD, VanGilder RL, Houser KA. Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats. Am J Physiol Heart Circ Physiol 2006; 291:H2660–H2668.

    PubMed  CAS  Google Scholar 

  65. Chehade JM, Haas MJ, Mooradian AD. Diabetes-related changes in rat cerebral occludin and ZO-1 expression. Neurochem Res 2002; 27:249–252.

    PubMed  CAS  Google Scholar 

  66. Sima AAF, Zhang W, Li ZG, Murakawa Y, Pierson CR. Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide. Diabetes 2004; 53:1556–1563.

    PubMed  CAS  Google Scholar 

  67. Jakobsen J, Nedergaard M, Aarlew-Jensen M, Diemer NH. Regional brain glucose metabolism and blood flow in streptozotocin-induced diabetic rats. Diabetes 1990; 39:437–440.

    PubMed  CAS  Google Scholar 

  68. Li ZG, Britton M, Sima AAF, Dunbar J. Diabetes enhances apoptosis induced by cerebral ischemia. Life Sci 2004; 76:249–262.

    PubMed  CAS  Google Scholar 

  69. Manschot SM, Biessels GJ, Cameron NE, et al. Angiotensin converting enzyme inhibition partially prevents deficits in water maze performance, hippocampal synaptic plasticity and cerebral blood flow in streptozotocin-diabetic rats. Brain Res 2003; 966(2):274–282.

    PubMed  CAS  Google Scholar 

  70. Hoffman WH, Casanova MF, Cudrici CD, et al. Neuroinflammatory response of the choroid plexus epithelium in fatal diabetic ketoacidosis. Exp Mol Pathol 2007; 83:65–72.

    PubMed  CAS  Google Scholar 

  71. Hoffman WH, Artlett CM, Zhang W, et al.. Receptor for advanced glycation end products and neuronal deficit in the fatal brain edema of diabetic ketoacidosis. Brain Research 2008:E. Pub., Aug. 26.

    Google Scholar 

  72. Toth C, Martinez J, Zochodne DW. RAGE, diabetes, and the nervous system. Curr Mol Med 2007; 7(8):766–776.

    PubMed  CAS  Google Scholar 

  73. Jani SK, McVie R, Bocchini Jr JA. Hyperketonemia (ketosis), oxidative stress and type 1 diabetes. Pathophysiology 2006; 13:163–170.

    Google Scholar 

  74. Baynes JW, Requena JR. Studies in animal models on the role of glycation and advanced glycation end-products (AGE’s) in the pathogenesis of diabetic complications: pitfalls and limitations. In: Sima AAF ed. Chronic Complications in Diabetes. Amsterdam: Harwood Acad. Publ.; 2000:43–70.

    Google Scholar 

  75. Makherjee TK, Mukhopadhyay S, Hoidal JR. The role of reactive oxygen species in TNF α-dependent expression of the receptor for advanced glycation end products in human umbilical vein endothelial cells. Biochem Biophys Acta 2005; 1744:213–223.

    Google Scholar 

  76. Zhang Y, Li SH, Liu SM, et al. C-reactive protein upregulates receptor for advanced glycation end products expression in human endothelial cells. Hypertension 2006; 48:504–511.

    Google Scholar 

  77. Araque A, Parpura V, Sanzgiri RP, Haydon PG. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 1998; 10:2129–2142.

    PubMed  CAS  Google Scholar 

  78. Yau SD, Schmidt AM, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptor/binding proteins. J Biol Chem 1994; 269:9889–9897.

    Google Scholar 

  79. Vance JE. Phosphatidylserine and phosphatidyl-ethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res Jan. 19, 2008 [E pub].

    Google Scholar 

  80. Baydas G, Nedzvetskii VS, Tuzcu M, Yasar A, Kirichenko SV. Increase in glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: effects of vitamin E. Eur J Pharmacol 2003; 461:67–71.

    Google Scholar 

  81. Biessels GJ, Smale S, Duis SE, Kamal A, Gispen WH. The effect of gamma-linoleic acid-alpha-lipoic acid on functional deficits in the peripheral and central nervous systems of streptozotocin-diabetic rats. J Neurol Sci 2001; 182:99–106.

    PubMed  CAS  Google Scholar 

  82. Stevens MJ, Zhang W, Li F, Sima AAF. C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor-rats. Am J Physiol 2004; 287:E497–E505.

    CAS  Google Scholar 

  83. Kamiya H, Zhang W, Sima AAF. C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 2004; 56:827–835.

    PubMed  CAS  Google Scholar 

  84. Zhang W, Kamiya H, Ekberg K, Wahren J, Sima AAF. C-peptide improves chronic diabetic neuropathy in type 1 diabetic BB-Wor-rats: the effects of varying dose regiments. Diab Metab Res Rev 2007; 23:63–70.

    Google Scholar 

  85. Kamiya H, Zhang W, Ekberg K, Wahren J, Sima AAF. C-peptide reverses nociceptive neuropathy in type 1 diabetic BB/Wor-rat. Diabetes 2006; 55:3581–3587.

    PubMed  CAS  Google Scholar 

  86. Brussee V, Cunningham FA, Zochodne DW. Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes 2004; 53:1824–1830.

    PubMed  CAS  Google Scholar 

  87. Sima AAF, Kamiya H. Insulin, C-peptide and diabetic neuropathy. Science Med 2004; 10:308–319.

    Google Scholar 

  88. Wozniak M, Rydzewski B, Baker SP, Raijada MK. The cellular and physiological action of insulin in the central nervous system. Neurochem Int 1993; 22:1–10.

    PubMed  CAS  Google Scholar 

  89. Grunberger G, Sima AAF. The C-peptide signaling. Exp Diab Res 2004; 5:25–36.

    CAS  Google Scholar 

  90. Musen G, Lyool K, Sparks CR, et al. Effect of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 2006; 55:326–333.

    PubMed  CAS  Google Scholar 

  91. Jakobsen J, Sidenius P, Gundersen HJ, Østerby R. Quantitative changes of cerebral neocortical structure in insulin treated long-term streptozotocin-induced diabetes in rats. Diabetes 1987; 36:597–601.

    PubMed  CAS  Google Scholar 

  92. Mukai N, Hori S, Pomeroy M. Cerebral lesions in rats with streptozotocin-induced diabetes. Acta Neuropath (Berl) 1980; 51:79–84.

    CAS  Google Scholar 

  93. Reul JM, Gesing A, Droste S, et al. The brain mineralocorticoid: greedy for ligand, mysterious in function. Eur J Pharmacol 2000; 405:235–249.

    PubMed  CAS  Google Scholar 

  94. de Kloet ER, de Rijk R. Signaling pathways in brain involved in predisposition and pathogenesis of stress-related disease: genetic and kinetic factors affecting the MR/GR balance. Ann NY Acad Sci 2004; 1032:14–34.

    PubMed  Google Scholar 

  95. de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endo Rev 1998; 19:269–301.

    Google Scholar 

  96. Revsin Y, Saravia F, Roig P, et al. Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 2005; 1038:22–31.

    PubMed  CAS  Google Scholar 

  97. Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neurosci 2008; 11:309–317.

    PubMed  CAS  Google Scholar 

  98. Fulop T, Larbi A, Donziech N. Insulin receptor and aging. Pathol Biol 2003; 51:574–580.

    PubMed  CAS  Google Scholar 

  99. Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer’s disease. Eur J Pharmacol 2004; 490:115–125.

    PubMed  CAS  Google Scholar 

  100. de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimer Dis 2005; 7:45–61.

    Google Scholar 

  101. Salkovic-Petrisic M, Tribl R, Schmidt M, Hoyer S, Riederer P. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signaling pathway. J Neurochem 2006; 96:1005–1015.

    PubMed  CAS  Google Scholar 

  102. Reagan LP, Magariños AM, Lucas LR, Van Beuren A, McCall AL, McEwen BS. Regulation of GLUT-3 glucose transporter in the hippocampus of diabetic rats subjected to stress. A J Physiol (Endocr Metab 39) 1999; 276:E879–E886.

    CAS  Google Scholar 

  103. Phiel CJ, Wilson CA, Lee VMY, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 2003; 423:435–439.

    PubMed  CAS  Google Scholar 

  104. Ishiguro K, Shiratsuchi, A, Sato S, et al. Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett 1993; 325:167–172.

    PubMed  CAS  Google Scholar 

  105. Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 2006; 55(12):3320–3325.

    PubMed  CAS  Google Scholar 

  106. Haley RW. Is there a connection between concentration of cholesterol circulating in plasma and the rate of neurite plaques formation in Alzheimer’s disease? Arch Neurol 2000; 57:1410–1412.

    PubMed  CAS  Google Scholar 

  107. Sima AAF, Zhang W. High glucose and cholesterol enhances caveolin-1 expression and amyloidogenic APP metabolism in SH-SY5Y cells (abstract). Proc. 18th Neurodiab Meeting, Orvieto, Italy, 2008.

    Google Scholar 

  108. Kimura A, Mora S, Shigematsu S, Pessin JE, Saltiel AR. The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1. J Biol Chem 2002; 277:30153–30158.

    PubMed  CAS  Google Scholar 

  109. Ridell DR, Christie G, Hussain I, Dingwall C. Compartmentalization of beta secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 2001; 11:1288–1293.

    Google Scholar 

  110. Ghribi O, Larsen B, Schrag M, Herman MM. High cholesterol content in neurons increases BACE, beta-amyloid and phosphorylated tau levels in rabbit hippocampus. Exp Neurol 2006; 200:460–467.

    PubMed  CAS  Google Scholar 

  111. Sharma M, Gupta YK. Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 2001; b8:1021–1029.

    Google Scholar 

  112. Sima AAF, Merry AC, Hall DE, Grant M, Murray FT, Guberski D. The BB/ZDR-rat; A model for type II diabetic neuropathy. Exp Clin Endocrin Diab 1997; 105:63–64.

    Google Scholar 

  113. Sima AAF, Zhang W, Xu G, Sugimoto K, Guberski DL, Yorek MA. A comparison of diabetic polyneuropathy in type-2 diabetic BBZDR/Wor-rat and in type 1 diabetic BB/Wor-rat. Diabetologia 2000; 43:786–793.

    PubMed  CAS  Google Scholar 

  114. Sima AAF. Diabetic neuropathy differs in type 1 and type 2 diabetes. Ann NY Acad Sci 2006; 1084:235–249.

    PubMed  Google Scholar 

  115. Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003; 100:4162–4167.

    PubMed  CAS  Google Scholar 

  116. Petanceska SS, Gandy S. The phosphotidylinositol 3-kinase inhibitor Wortmannin alters the metabolism of the Alzheimer’s amyloid precursor protein. J Neurochem 1999; 73:2316–2320.

    PubMed  CAS  Google Scholar 

  117. Johnson GVW, Bailey CDC. The p38 MAP kinase signaling pathway in Alzheimer’s disease. Exp Neurol 2003; 183:262–268.

    Google Scholar 

  118. Lu DC, Rabizadeh S, Chandra S, et al. A second cytotoxic proteolytic peptide derived from amyloid β-protein precursor. Nature Med 2000; 6:397–404.

    PubMed  CAS  Google Scholar 

  119. Galvan V, Chen S, Lu D, et al. Caspase cleavage of members of the amyloid precursor family of proteins. J Neurochem 2003; 82:283–294.

    Google Scholar 

  120. Tamagno E, Bardini P, Obbili A, et al. Oxidative stress increases expression of BACE in NT2 neurons. Neurobiol Dis 2002; 10:279–288.

    PubMed  CAS  Google Scholar 

  121. Cohen AW, Combs TP, Scherer PE, Lisanti MP. Role of caveolin and caveolae in insulin signaling and diabetes. Am J Phys Endocrinol Metab 2003; 28:E1151–E1160.

    Google Scholar 

  122. Nyström FH, Chen H, Long LN, Li Y, Quon MJ. Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Coc-7 cells and rat adipose cells. Mol Endocrinol 1999; 13:2013–2024.

    PubMed  Google Scholar 

  123. Gamblin TC, Chen F, Zambrano A, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. PNAS 2003; 100:10032–10037.

    PubMed  CAS  Google Scholar 

  124. Kamiya H, Zhang W, Sima AAF. Degeneration of Golgi and neuronal loss in DRG’s in diabetic BB/Wor-rats. Diabetologia 2006; 49:2763–2774.

    PubMed  CAS  Google Scholar 

  125. Cheng C, Zochodne DW. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 2003; 52:2363–2371.

    PubMed  CAS  Google Scholar 

  126. Oddo S, Caccamo A, Shepheard JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron 2003; 39:409–421.

    PubMed  CAS  Google Scholar 

  127. Ivins KJ, Thornton PL, Rohn TT, Colman CW. Neuronal apoptosis induced by beta-amyloid is mediated by caspase-8. Neurobiol Dis 1999; 6:440–449.

    PubMed  CAS  Google Scholar 

  128. Matsui T, Ramasamy K, Ingelsson M, et al. Coordinated expression of caspase 8, 3 and 7 mRNA in temporal cortex of Alzheimer disease: relationship to formic acid extractable Aβ42 levels. J Neuropath Exp Neurol 2006; 65:508–515.

    PubMed  CAS  Google Scholar 

  129. Hoyer S. The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update. J Neurol Transm 2000; 109:341–360.

    Google Scholar 

  130. Selkoe DJ. Alzheimer’s disease: genes, proteins and therapy. Physiol Rev 2001; 81:741–766.

    PubMed  CAS  Google Scholar 

  131. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci 2001; 24:1121–1159.

    PubMed  CAS  Google Scholar 

  132. Bayer TA, Wirths O, Majtenyi K, et al. Key factors in Alzheimer’s disease: beta amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol 2001; 11:1–11 (Review).

    PubMed  CAS  Google Scholar 

  133. Uetzuki T, Takemoto K, Nishimura I, et al. Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 1999; 19:6955–6964.

    Google Scholar 

  134. Geschvind M, Huber G. Apoptotic cell death induced by β-amyloid 1–42 peptide is cell dependent. J Neurochem 1995; 65:292–300.

    Google Scholar 

  135. Ekberg K, Brismar T, Johansson BL, Jonsson B, Lindström P, Wahren J. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes 2003; 52:536–541.

    PubMed  CAS  Google Scholar 

  136. Ekberg K, Johansson BL. Effect of C-peptide on diabetic neuropathy in patients with type 1 diabetes. Exp Diab Res 2008:2008.457912 (online publ.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders A.F. Sima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sima, A.A. (2009). Pathobiology of Diabetic Encephalopathy in Animal Models. In: Biessels, G., Luchsinger, J. (eds) Diabetes and the Brain. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-60327-850-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-850-8_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-849-2

  • Online ISBN: 978-1-60327-850-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics