Skip to main content

Kinome Profiling Using Peptide Arrays in Eukaryotic Cells

  • Protocol
Phospho-Proteomics

Part of the book series: Methods in Molecular Biologyâ„¢ ((MIMB,volume 527))

Summary

Over the last 10 years array and mass spectrometry technologies have enabled the determination of the transcriptome and proteome of biological and in particular eukaryotic systems. This information will likely be of significant value to our elucidation of the molecular mechanisms that govern eukaryotic physiology. However, an equally, if not more important goal, is to define those proteins that participate in signalling pathways that ultimately control cell fate. Enzymes that phosphorylate tyrosine, serine, and threonine residues on other proteins play a major role in signalling cascades that determine cell-cycle entry, and survival and differentiation fate in the tissues across the eukaryotic kingdoms. Knowing which signalling pathways are being used in these cells is of critical importance. Traditional genetic and biochemical approaches can certainly provide answers here, but for technical and practical reasons there is typically pursued one gene or pathway at a time. Thus, a more comprehensive approach is needed in order to reveal signalling pathways active in nucleated cells. Towards this end, kinome analysis techniques using peptide arrays have begun to be applied with substantial success in a variety of organisms from all major branches of eukaryotic life, generating descriptions of cellular signalling without a priori assumptions as to possibly effected pathways. The general procedure and analysis methods are very similar disregarding whether the primary source of the material is animal, plant, or fungal of nature and will be described in this chapter. These studies will help us better understand what signalling pathways are critical to controlling eukaryotic cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krebs, E. G. (1993) Nobel Lecture. Protein phosphorylation and cellular regulation I. Bio-sci Rep 13, 127–42.

    Article  CAS  Google Scholar 

  2. Versteeg, H. H., Nijhuis, E., van den Brink, G. R., Evertzen, M., Pynaert, G. N., van Deventer, S. J., et al. (2000) A new phosphospecific cell-based ELISA for p42/p44 mitogen-activated protein kinase (MAPK), p38 MAPK, protein kinase B and cAMP-response-element-binding protein. Biochem J 350, 717–22.

    Article  PubMed  CAS  Google Scholar 

  3. Hung, G. G., Provost, E., Kielhorn, E. P., Charette, L. A., Smith, B. L., Rimm, D. L. (2001) Tissue microarray analysis of beta-cat-enin in colorectal cancer shows nuclear phos-pho-beta-catenin is associated with a better prognosis. Clin Cancer Res 7, 4013–20.

    Google Scholar 

  4. Irish, J. M., Hovland, R., Krutzik, P. O., Perez, O. D., Bruserud, O., Gjertsen, B. T., et al. (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–28.

    Article  PubMed  CAS  Google Scholar 

  5. Pelech, S. (2004) Tracking cell signaling protein expression and phosphorylation by innovative proteomic solutions. Curr Pharm Biotechnol 5, 69–77.

    Article  PubMed  CAS  Google Scholar 

  6. Ballif, B. A., Villen, J., Beausoleil, S. A., Schwartz, D., Gygi, S. P. (2004) Phosphopro-teomic analysis of the developing mouse brain. Mol Cell Proteomics 3, 1093–101.

    Article  PubMed  CAS  Google Scholar 

  7. Lueking, A., Horn, M., Eickhoff, H., Bussow, K., Lehrach, H., Walter, G. (1999) Protein micro-arrays for gene expression and antibody screening. Anal Biochem 270, 103–11.

    Article  PubMed  CAS  Google Scholar 

  8. Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., Mirzabekov, A. (2000) Protein microchips: use for immu-noassay and enzymatic reactions. Anal Bio-chem 278, 123–31.

    CAS  Google Scholar 

  9. MacBeath, G., Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–3.

    PubMed  CAS  Google Scholar 

  10. Zhu, H., Snyder, M. (2001) Protein arrays and microarrays. Curr Opin Chem Biol 5, 40–5.

    Article  PubMed  CAS  Google Scholar 

  11. Wenschuh, H., Volkmer-Engert, R., Schmidt, M., Schulz, M., Schneider-Mergener, J., Reineke, U. (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55, 188–206.

    Article  PubMed  CAS  Google Scholar 

  12. Falsey, J. R., Renil, M., Park, S., Li, S., Lam, K. S. (2001) Peptide and small molecule micro-array for high throughput cell adhesion and functional assays. Bioconjug Chem 12, 346–53.

    Article  PubMed  CAS  Google Scholar 

  13. Reineke, U., Volkmer-Engert, R., Schneider-Mergener, J. (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr Opin Biotechnol 12, 59–64.

    Article  PubMed  CAS  Google Scholar 

  14. Houseman, B. T., Mrksich, M. (2002) Towards quantitative assays with peptide chips: a surface engineering approach. Trends Biotechnol 20, 279–81.

    Article  PubMed  CAS  Google Scholar 

  15. Diks, S. H., Kok, K., O'Toole, T., Hommes, D. W., van Dijken, P., Joore, J., et al. (2004) Kinome profiling for studying lipopolysac-charide signal transduction in human peripheral blood mononuclear cells. J Biol Chem 279(47), 49206–13.

    Article  PubMed  CAS  Google Scholar 

  16. Ritsema, T., Joore, J., van Workum, W., Pieterse, C. M. (2007) Kinome profiling of Arabidopsis using arrays of kinase consensus substrates. Plant Methods 3, 3.

    Article  PubMed  Google Scholar 

  17. Blom, N., Kreegipuu, A., Brunak, S., Conway, T., Schoolnik, G. K. (1998) PhosphoBase: a database of phosphorylation sites. Nucleic Acids Res 26, 382–6.

    Article  PubMed  CAS  Google Scholar 

  18. Kreegipuu, A., Blom, N., Brunak, S. (1999) PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res 27, 237–9.

    Article  PubMed  CAS  Google Scholar 

  19. Diks, S. H., Parikh, K., van der Sijde, M., Joore, J., Ritsema, T., Peppelenbosch, M. P. (2007) Evidence for a minimal eukaryotic phosphoproteome? PLoS ONE 2(1), e777.

    Article  PubMed  Google Scholar 

  20. de Borst, M. H., Diks, S. H., Bolbrinker, J., Schellings, M. W., van Dalen, M. B., Peppe-lenbosch, M. P., et al. (2007) Profiling of the renal kinome: a novel tool to identify protein kinases involved in angiotensin II-dependent hypertensive renal damage. Am J Physiol Renal Physiol 293, F428–37.

    Article  PubMed  Google Scholar 

  21. van Baal, J. W., Diks, S. H., Wanders, R. J., Rygiel, A. M., Milano, F., Joore, J., et al. (2006) Comparison of kinome profiles of Barrett's esophagus with normal squamous esophagus and normal gastric cardia. Cancer Res 66, 11605–12.

    Article  PubMed  Google Scholar 

  22. Löwenberg, M., Tuynman, J., Scheffer, M., Verhaar, A., Vermeulen, L., van Deventer, S., et al. (2006) Kinome analysis reveals nong-enomic glucocorticoid receptor-dependent inhibition of insulin signaling. Endocrinology 147, 3555–62.

    Article  PubMed  Google Scholar 

  23. Löwenberg, M., Tuynman, J., Bilderbeek, J., Gaber, T., Buttgereit, F., van Deventer, S., et al. (2005) Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 106, 1703–10.

    Article  PubMed  Google Scholar 

  24. Tuynman, J., Vermeulen, L., Boon, L., Kem-per, K., Zwinderman, A., Peppelenbosch, M., et al. (2008) Selective COX-2 inhibition inhibits c-Met kinase activity and inhibits Wnt activity in colon cancer. Cancer Res 68, 1213–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the tremendous support from the Top Institute Pharma (Dutch government) for developing the Pep-Chip technology. In addition, we are grateful for the support of the innovative actions programme Groningen supported by the European Commission.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Parikh, K., Peppelenbosch, M.P., Ritsema, T. (2009). Kinome Profiling Using Peptide Arrays in Eukaryotic Cells. In: Graauw, M.d. (eds) Phospho-Proteomics. Methods in Molecular Biologyâ„¢, vol 527. Humana Press. https://doi.org/10.1007/978-1-60327-834-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-834-8_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-833-1

  • Online ISBN: 978-1-60327-834-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics