Skip to main content

Genome-Wide Analysis of RNA-Protein Interactions in Plants

  • Protocol
  • First Online:
Plant Systems Biology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 553))

Abstract

RNA–protein interactions profoundly impact organismal development and function through their contributions to the basal gene expression machineries and their regulation of post-transcriptional processes. The repertoire of predicted RNA binding proteins (RBPs) in plants is particularly large, suggesting that the RNA–protein interactome in plants may be more complex and dynamic even than that in metazoa. To dissect RNA–protein interaction networks, it is necessary to identify the RNAs with which each RBP interacts and to determine how those interactions influence RNA fate and downstream processes. Identification of the native RNA ligands of RBPs remains a challenge, but several high-throughput methods for the analysis of RNAs that copurify with specific RBPs from cell extract have been reported recently. This chapter reviews approaches for defining the native RNA ligands of RBPs on a genome-wide scale and provides a protocol for a method that has been used to this end for RBPs that localize to the chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Considerable progress was made in this field between the time of manuscript submission and the time of publication. Therefore, several important recent studies are not discussed.

References

  1. Hieronymus, H. and Silver, P.A. (2004) A systems view of mRNP biology. Genes Dev. 18, 2845–2860.

    Article  PubMed  CAS  Google Scholar 

  2. Keene, J.D. (2007) RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543.

    Article  PubMed  CAS  Google Scholar 

  3. Jambhekar, A. and Derisi, J.L. (2007) Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA. 13, 625–642.

    Article  PubMed  CAS  Google Scholar 

  4. Okita, T.W. and Choi, S.B. (2002) mRNA localization in plants: targeting to the cell's cortical region and beyond. Curr. Opin. Plant Biol. 5, 553–559.

    Article  PubMed  CAS  Google Scholar 

  5. Knoop, V. and Brennicke, A. (2002) Molecular biology of the plant mitochondrion. Crit. Rev. Plant Sci. 21, 111–126.

    Article  CAS  Google Scholar 

  6. Bollenbach, T.J., Schuster, G., and Stern, D.B. (2004) Cooperation of endo- and exoribonucleases in chloroplast mRNA turnover. Prog. Nucleic Acid Res. Mol. Biol. 78, 305–337.

    Article  PubMed  CAS  Google Scholar 

  7. Bonen, L. (2004) in Molecular Biology and Biotechnology of Plant Organelles, eds. Daniell, H. & Chase, C. (Springer, Dordrecht), pp. 323–345.

    Google Scholar 

  8. Barkan, A. (2004) in Molecular Biology and Biotechnology of Plant Organelles, eds. Daniell, H. & Chase, C. (Kluwer Academic Publishers, Dordrecht, The Netherlands), pp. 281–308.

    Google Scholar 

  9. Zerges, W. (2004) in Molecular Biology and Biotechnology of Plant Organelles, eds. Daniell, H. & Chase, C. (Springer, Dordrecht), pp. 347–383.

    Google Scholar 

  10. Belostotsky, D.A. and Rose, A.B. (2005) Plant gene expression in the age of systems biology: integrating transcriptional and post-transcriptional events. Trends Plant Sci. 10, 347–353.

    Article  PubMed  CAS  Google Scholar 

  11. Fedoroff, N. (2002) RNA-binding proteins in plants: the tip of an iceberg? Plant J. 5, 452–459.

    CAS  Google Scholar 

  12. Carrington, J. and Ambros, V. (2003) Role of MicroRNAs in plant and animal development. Science. 301, 336–338.

    Article  PubMed  CAS  Google Scholar 

  13. Kuhn, J. and Schroeder, J. (2003) Impacts of altered RNA metabolism on abscisic acid signalling. Curr. Opin. Plant Biol. 6, 463–469.

    Article  PubMed  CAS  Google Scholar 

  14. Lidder, P., Gutierrez, R.A., Salome, P.A., McClung, C.R., and Green, P.J. (2005) Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway. Plant Physiol. 138, 2374–2385.

    Article  PubMed  CAS  Google Scholar 

  15. Kawaguchi, R., Girke, T., Bray, E.A., and Bailey-Serres, J. (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J. 38, 823–839.

    Article  PubMed  CAS  Google Scholar 

  16. Branco-Price, C., Kawaguchi, R., Ferreira, R.B., and Bailey-Serres, J. (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann. Bot. (Lond). 96, 647–660.

    Article  CAS  Google Scholar 

  17. Reddy, A.S. (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu. Rev. Plant Biol. 58, 267–294.

    Article  PubMed  CAS  Google Scholar 

  18. Iida, K., Seki, M., Sakurai, T., Satou, M., Akiyama, K., Toyoda, T., Konagaya, A., and Shinozaki, K. (2004) Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences. Nucleic Acids Res. 32, 5096–5103.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, B.B. and Brendel, V. (2006) Genomewide comparative analysis of alternative splicing in plants. Proc. Natl. Acad. Sci. USA. 103, 7175–7180.

    Google Scholar 

  20. Dreyfuss, G., Kim, V.N., and Kataoka, N. (2002) Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell. Biol. 3, 195–205.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, B.B. and Brendel, V. (2004) The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol. 5, R102.

    Article  PubMed  Google Scholar 

  22. Belostotsky, D. (2003) Unexpected complexity of poly(A)-binding protein gene families in flowering plants: three conserved lineages that are at least 200 million years old and possible auto- and cross-regulation. Genetics. 163, 311–319.

    PubMed  CAS  Google Scholar 

  23. Lorkovic, Z. and Barta, A. (2002) Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res. 30, 623–635.

    Article  PubMed  CAS  Google Scholar 

  24. Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y., and Watkins, K. (2007) The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein. RNA. 13, 55–64.

    Article  PubMed  CAS  Google Scholar 

  25. Lurin, C., Andres, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyere, C., Caboche, M., Debast, C., Gualberto, J., Hoffmann, B., Lecharny, A., Le Ret, M., Martin-Magniette, M. L., Mireau, H., Peeters, N., Renou, J.P., Szurek, B., Taconnat, L., and Small, I. (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell. 16, 2089–2103.

    Article  PubMed  CAS  Google Scholar 

  26. Walker, N.S., Stiffler, N., and Barkan, A. (2007) POGs/PlantRBP: a resource for comparative genomics in plants. Nucleic Acids Res. 35, D852–D856.

    Article  PubMed  CAS  Google Scholar 

  27. Small, I. and Peeters, N. (2000) The PPR motif – a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25, 46–47.

    Article  PubMed  CAS  Google Scholar 

  28. Blanchette, M., Labourier, E., Green, R.E., Brenner, S.E., and Rio, D.C. (2004) Genome-wide analysis reveals an unexpected function for the Drosophila splicing factor U2AF50 in the nuclear export of intronless mRNAs. Mol. Cell. 14, 775–786.

    Article  PubMed  CAS  Google Scholar 

  29. Blanchette, M., Green, R.E., Brenner, S.E., and Rio, D.C. (2005) Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev. 19, 1306–1314.

    Article  PubMed  CAS  Google Scholar 

  30. Rehwinkel, J., Herold, A., Gari, K., Kocher, T., Rode, M., Ciccarelli, F.L., Wilm, M., and Izaurralde, E. (2004) Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat. Struct. Mol. Biol. 11, 558–566.

    Article  PubMed  CAS  Google Scholar 

  31. Fitzwater, T. and Polisky, B. (1996) A SELEX primer. Methods Enzymol. 267, 275–301.

    Article  PubMed  CAS  Google Scholar 

  32. Kim, S., Shi, H., Lee, D.K., and Lis, J.T. (2003) Specific SR protein-dependent splicing substrates identified through genomic SELEX. Nucleic Acids Res. 31, 1955–1961.

    Article  PubMed  CAS  Google Scholar 

  33. Faustino, N.A. and Cooper, T.A. (2005) Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol. Cell. Biol. 25, 879–887.

    Article  PubMed  CAS  Google Scholar 

  34. Hook, B., Bernstein, D., Zhang, B., and Wickens, M. (2005) RNA–protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA. 11, 227–233.

    Article  PubMed  CAS  Google Scholar 

  35. Seay, D., Hook, B., Evans, K., and Wickens, M. (2006) A three-hybrid screen identifies mRNAs controlled by a regulatory protein. RNA. 12, 1594–1600.

    Article  PubMed  CAS  Google Scholar 

  36. Miller, J.W., Urbinati, C.R., Teng-Umnuay, P., Stenberg, M.G., Byrne, B.J., Thornton, C.A., and Swanson, M.S. (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448.

    Article  PubMed  CAS  Google Scholar 

  37. Asakura, Y. and Barkan, A. (2007) A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. Plant Cell. 19, 3864–3875.

    Google Scholar 

  38. Schmitz-Linneweber, C., Williams-Carrier, R., and Barkan, A. (2005) RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′-region of mRNAs whose translation it activates. Plant Cell. 17, 2791–2804.

    Article  PubMed  CAS  Google Scholar 

  39. Schmitz-Linneweber, C., Williams-Carrier, R.E., Williams-Voelker, P.M., Kroeger, T.S., Vichas, A., and Barkan, A. (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell. 18, 2650–2663.

    Article  PubMed  CAS  Google Scholar 

  40. Watkins, K., Kroeger, T., Cooke, A., Williams-Carrier, R., Friso, G., Belcher, S., Wijk, K.V., and Barkan, A. (2007) A ribonuclease III domain protein functions in group II intron splicing in maize chloroplasts. Plant Cell. 19, 2606–2623.

    Article  PubMed  CAS  Google Scholar 

  41. Zanetti, M.E., Chang, I.F., Gong, F., Galbraith, D.W., and Bailey-Serres, J. (2005) Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 138, 624–635.

    Article  PubMed  CAS  Google Scholar 

  42. Inada, M. and Guthrie, C. (2004) Identification of Lhp1p-associated RNAs by microarray analysis in Saccharomyces cerevisiae reveals association with coding and noncoding RNAs. Proc. Natl. Acad. Sci. USA. 101, 434–439.

    Google Scholar 

  43. Gerber, A.P., Herschlag, D., and Brown, P.O. (2004) Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79.

    Article  PubMed  Google Scholar 

  44. Shepard, K.A., Gerber, A.P., Jambhekar, A., Takizawa, P.A., Brown, P.O., Herschlag, D., DeRisi, J.L., and Vale, R.D. (2003) Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc. Natl. Acad. Sci. USA. 100, 11429–11434.

    Google Scholar 

  45. Hieronymus, H. and Silver, P.A. (2003) Genome-wide analysis of RNA–protein interactions illustrates specificity of the mRNA export machinery. Nat. Genet. 33, 155–161.

    Article  PubMed  CAS  Google Scholar 

  46. Duttagupta, R., Tian, B., Wilusz, C.J., Khounh, D.T., Soteropoulos, P., Ouyang, M., Dougherty, J.P., and Peltz, S.W. (2005) Global analysis of Pub1p targets reveals a coordinate control of gene expression through modulation of binding and stability. Mol. Cell. Biol. 25, 5499–5513.

    Article  PubMed  CAS  Google Scholar 

  47. Kotovic, K.M., Lockshon, D., Boric, L., and Neugebauer, K.M. (2003) Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol. Cell. Biol. 23, 5768–5779.

    Article  PubMed  CAS  Google Scholar 

  48. Guisbert, K., Duncan, K., Li, H., and Guthrie, C. (2005) Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA. 11, 383–393.

    Article  CAS  Google Scholar 

  49. Oeffinger, M., Wei, K.E., Rogers, R., Degrasse, J.A., Chait, B.T., Aitchison, J.D., and Rout, M.P. (2007) Comprehensive analysis of diverse ribonucleoprotein complexes. Nat. Methods. 4, 951–956.

    Article  PubMed  CAS  Google Scholar 

  50. Gabellini, D., D'Antona, G., Moggio, M., Prelle, A., Zecca, C., Adami, R., Angeletti, B., Ciscato, P., Pellegrino, M.A., Bottinelli, R., Green, M.R., and Tupler, R. (2006) Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature. 439, 973–977.

    PubMed  CAS  Google Scholar 

  51. Gabut, M., Mine, M., Marsac, C., Brivet, M., Tazi, J., and Soret, J. (2005) The SR protein SC35 is responsible for aberrant splicing of the E1alpha pyruvate dehydrogenase mRNA in a case of mental retardation with lactic acidosis. Mol. Cell. Biol. 25, 3286–3294.

    Article  PubMed  CAS  Google Scholar 

  52. Kalyna, M., Lopato, S., and Barta, A. (2003) Ectopic expression of atRSZ33 reveals its function in splicing and causes pleiotropic changes in development. Mol. Biol. Cell. 14, 3565–3577.

    Article  PubMed  CAS  Google Scholar 

  53. Corbeil-Girard, L.P., Klein, A.F., Sasseville, A.M., Lavoie, H., Dicaire, M.J., Saint-Denis, A., Page, M., Duranceau, A., Codere, F., Bouchard, J.P., Karpati, G., Rouleau, G.A., Massie, B., Langelier, Y., and Brais, B. (2005) PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions. Neurobiol. Dis. 18, 551–567.

    Article  PubMed  CAS  Google Scholar 

  54. Kiesler, E., Hase, M.E., Brodin, D., and Visa, N. (2005) Hrp59, an hnRNP M protein in Chironomus and Drosophila, binds to exonic splicing enhancers and is required for expression of a subset of mRNAs. J. Cell. Biol. 168, 1013–1025.

    Article  PubMed  CAS  Google Scholar 

  55. Gama-Carvalho, M., Barbosa-Morais, N.L., Brodsky, A.S., Silver, P.A., and Carmo-Fonseca, M. (2006) Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors. Genome Biol. 7, R113.

    Article  PubMed  Google Scholar 

  56. Lopez de Silanes, I., Galban, S., Martindale, J.L., Yang, X., Mazan-Mamczarz, K., Indig, F.E., Falco, G., Zhan, M., and Gorospe, M. (2005) Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Mol. Cell. Biol. 25, 9520–9531.

    Google Scholar 

  57. Brown, V., Jin, P., Ceman, S., Darnell, J., O'Donnell, W., Tenenbaum, S., Jin, X., Feng, U., Wilkinson, K., Keene, J., Darnell, R., and Warren, S. (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in Fragile X Syndrome. Cell. 107, 477–487.

    Article  PubMed  CAS  Google Scholar 

  58. Reynolds, N., Collier, B., Maratou, K., Bingham, V., Speed, R.M., Taggart, M., Semple, C.A., Gray, N.K., and Cooke, H.J. (2005) Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum. Mol. Genet. 14, 3899–3909.

    Article  PubMed  CAS  Google Scholar 

  59. Tenenbaum, S., Carson, C., Lager, P., and Keene, J. (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl. Acad. Sci. USA. 97, 14085–14090.

    Google Scholar 

  60. Townley-Tilson, W.H., Pendergrass, S.A., Marzluff, W.F., and Whitfield, M.L. (2006) Genome-wide analysis of mRNAs bound to the histone stem-loop binding protein. RNA. 12, 1853–1867.

    Article  PubMed  CAS  Google Scholar 

  61. Swinburne, I.A., Meyer, C.A., Liu, X.S., Silver, P.A., and Brodsky, A.S. (2006) Genomic localization of RNA binding proteins reveals links between pre-mRNA processing and transcription. Genome Res. 16, 912–921.

    Article  PubMed  CAS  Google Scholar 

  62. Ule, J., Jensen, K.B., Ruggiu, M., Mele, A., Ule, A., and Darnell, R.B. (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science. 302, 1212–1215.

    Article  PubMed  CAS  Google Scholar 

  63. Klimek-Tomczak, K., Wyrwicz, L.S., Jain, S., Bomsztyk, K., and Ostrowski, J. (2004) Characterization of hnRNP K protein–RNA interactions. J. Mol. Biol. 342, 1131–1141.

    Article  PubMed  CAS  Google Scholar 

  64. Eystathioy, T., Chan, E.K., Tenenbaum, S.A., Keene, J.D., Griffith, K., and Fritzler, M.J. (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell. 13, 1338–1351.

    Article  PubMed  CAS  Google Scholar 

  65. Mordes, D., Yuan, L., Xu, L., Kawada, M., Molday, R.S., and Wu, J.Y. (2007) Identification of photoreceptor genes affected by PRPF31 mutations associated with autosomal dominant retinitis pigmentosa. Neurobiol. Dis. 26, 291–300.

    Article  PubMed  CAS  Google Scholar 

  66. Guil, S. and Caceres, J.F. (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591–596.

    Article  PubMed  CAS  Google Scholar 

  67. Waggoner, S.A. and Liebhaber, S.A. (2003) Identification of mRNAs associated with alphaCP2-containing RNP complexes. Mol. Cell. Biol. 23, 7055–7067.

    Article  PubMed  CAS  Google Scholar 

  68. Labourier, E., Blanchette, M., Feiger, J.W., Adams, M.D., and Rio, D.C. (2002) The KH-type RNA-binding protein PSI is required for Drosophila viability, male fertility, and cellular mRNA processing. Genes Dev. 16, 72–84.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang, A., Wassarman, K.M., Rosenow, C., Tjaden, B.C., Storz, G., and Gottesman, S. (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol. Microbiol. 50, 1111–1124.

    Article  PubMed  CAS  Google Scholar 

  70. Easow, G., Teleman, A.A., and Cohen, S.M. (2007) Isolation of microRNA targets by miRNP immunopurification. RNA. 13, 1198–1204.

    Article  PubMed  CAS  Google Scholar 

  71. Gerber, A.P., Luschnig, S., Krasnow, M.A., Brown, P.O., and Herschlag, D. (2006) Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 103, 4487–4492.

    Google Scholar 

  72. Penalva, L.O., Burdick, M.D., Lin, S.M., Sutterluety, H., and Keene, J.D. (2004) RNA-binding proteins to assess gene expression states of co-cultivated cells in response to tumor cells. Mol. Cancer. 3, 24.

    Article  PubMed  Google Scholar 

  73. Mili, S. and Steitz, J.A. (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA. 10, 1692–1694.

    Article  PubMed  CAS  Google Scholar 

  74. Ule, J., Jensen, K., Mele, A., and Darnell, R.B. (2005) CLIP: a method for identifying protein–RNA interaction sites in living cells. Methods. 37, 376–386.

    Article  PubMed  CAS  Google Scholar 

  75. Niranjanakumari, S., Lasda, E., Brazas, R., and Garcia-Blanco, M.A. (2002) Reversible cross-linking combined with immunoprecipitation to study RNA–protein interactions in vivo. Methods. 26, 182–190.

    Article  PubMed  CAS  Google Scholar 

  76. Penalva, L.O., Tenenbaum, S.A., and Keene, J.D. (2004) Gene expression analysis of messenger RNP complexes. Methods Mol. Biol. 257, 125–134.

    PubMed  CAS  Google Scholar 

  77. Keene, J.D., Komisarow, J.M., and Friedersdorf, M.B. (2006) RIP-chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat. Protoc. 1, 302–307.

    Article  PubMed  CAS  Google Scholar 

  78. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science. 316, 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  79. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O.L., He, A., Marra, M., Snyder, M., and Jones, S. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods. 4, 651–657.

    Article  PubMed  CAS  Google Scholar 

  80. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S., and Bernstein, B.E. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 448, 553–560.

    Article  PubMed  CAS  Google Scholar 

  81. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell. 129, 823–837.

    Article  PubMed  CAS  Google Scholar 

  82. Pinol-Roma, S., Swanson, M.S., Matunis, M.J., and Dreyfuss, G. (1990) Purification and characterization of proteins of heterogeneous nuclear ribonucleoprotein complexes by affinity chromatography. Methods Enzymol. 181, 326–331.

    Article  PubMed  CAS  Google Scholar 

  83. Haring, M., Offermann, S., Danker, T., Horst, I., Peterhaensel, C., and Stam, M. (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods. 3, 11.

    Article  PubMed  Google Scholar 

  84. Barkan, A. (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J. 7, 2637–2644.

    PubMed  CAS  Google Scholar 

  85. Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor).

    Google Scholar 

  86. Barkan, A. (1998) Approaches to investigating nuclear genes that function in chloroplast biogenesis in land plants. Methods Enzymol. 297, 38–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Rosalind Williams-Carrier and Christian Schmitz-Linneweber for their central contributions in developing our RIP-chip methodology, Eric Johnson and his laboratory for guidance in microarray printing and hybridization, and Jana Prikryl, Yukari Asakura, Susan Belcher, and Kenneth Watkins for optimizing aspects of the protocols. I would also like to thank Rodger Voelker, Todd Mockler, and Don Rio for stimulating discussions and for their comments on the manuscript and Don Rio for communicating results prior to publication. This work was supported by grant DBI-0421799 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barkan, A. (2009). Genome-Wide Analysis of RNA-Protein Interactions in Plants. In: Belostotsky, D. (eds) Plant Systems Biology. Methods in Molecular Biology™, vol 553. Humana Press. https://doi.org/10.1007/978-1-60327-563-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-563-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-562-0

  • Online ISBN: 978-1-60327-563-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics