Skip to main content

High-Content Screening: Flow Cytometry Analysis

  • Protocol
  • First Online:
Cell-Based Assays for High-Throughput Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 486))

Summary

The HyperCyt® high-throughput (HT) flow cytometry sampling platform uses a peristaltic pump, in combination with an autosampler, and a novel approach to data collection, to circumvent time-delay bottlenecks of conventional flow cytometry. This approach also dramatically reduces the amount of sample aspirated for each analysis, typically requiring ~2 μL per sample while making quantitative fluorescence measurements of 40 or more samples per minute with thousands to tens of thousands of cells in each sample. Here, we describe a simple robust screening assay that exploits the high-content measurement capabilities of the flow cytometer to simultaneously probe the binding of test compounds to two different receptors in a common assay volume, a duplex assay format. The ability of the flow cytometer to distinguish cell-bound from free fluorophore is also exploited to eliminate wash steps during assay setup. HT flow cytometry with this assay has allowed efficient screening of tens of thousands of small molecules from the NIH Small-Molecule Repository to identify selective ligands for two related G-protein-coupled receptors, the formylpeptide receptor and formylpeptide receptor-like 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuckuck, F. W., Edwards, B. S., and Sklar, L. A. (2001) High throughput flow cytometry. Cytometry 44, 83–90.

    Article  PubMed  CAS  Google Scholar 

  2. Ramirez, S., Aiken, C. T., Andrzejewski, B., Sklar, L. A., and Edwards, B. S. (2003) High-throughput flow cytometry: validation in microvolume bioassays. Cytometry A 53, 55–65.

    Article  PubMed  Google Scholar 

  3. Young, S. M., Bologa, C., Prossnitz, E., Oprea, T. I., Sklar, L. A., and Edwards, B. S. (2005) High-throughput screening with HyperCyt flow cytometry to detect small molecule formylpeptide receptor ligands. J. Biomol. Screen. 10, 374–382.

    Article  PubMed  CAS  Google Scholar 

  4. Edwards, B. S., Bologa, C., Young, S. M., Balakin, K. V., Prossnitz, E., Savchuck, N. P., Sklar, L. A., and Oprea, T. I. (2005) Integration of virtual screening with high-throughput flow cytometry to identify novel small molecule formylpeptide receptor antagonists. Mol. Pharmacol. 68, 1301–1310.

    Article  PubMed  CAS  Google Scholar 

  5. Edwards, B. S., Young, S. M., Oprea, T. I., Bologa, C., Prossnitz, E., and Sklar, L. A. (2006) Biomolecular screening of formylpeptide receptor ligands with a sensitive, quantitative, high-throughput flow cytometry platform. Nat. Protocols 1, 59–66.

    Article  CAS  Google Scholar 

  6. Migeotte, I., Communi, D., and Parmentier, M. (2006) Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 17, 501–519.

    Article  PubMed  CAS  Google Scholar 

  7. Le, Y., Murphy, P. M., and Wang, J. M. (2002) Formyl-peptide receptors revisited. Trends Immunol. 23, 541–548.

    Article  PubMed  CAS  Google Scholar 

  8. Oppenheim, J. J., Zachariae, C. O., Mukaida, N., and Matsushima, K. (1991) Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu. Rev. Immunol. 9, 617–648.

    Article  PubMed  CAS  Google Scholar 

  9. Murphy, P. M. (1996), in Chemoattractant Ligands and Their Receptors (Horuk, R., ed.), CRC Press, Boca Raton, FL, pp. 269–299.

    Google Scholar 

  10. Prossnitz, E. R., and Ye, R. D. (1997) The N-formyl peptide receptor: a model for the study of chemoattractant receptor structure and function. Pharmacol. Ther. 74, 73–102.

    Article  PubMed  CAS  Google Scholar 

  11. Ye, R. D., Cavanagh, S. L., Quehenberger, O., Prossnitz, E. R., and Cochrane, C. G. (1992) Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem. Biophys. Res. Commun. 184, 582–589.

    Article  PubMed  CAS  Google Scholar 

  12. Snipe, J. D. (1990), in Immunophysiology: The Role of Cells and Cytokines in Immunity and Inflammation (Oppenheim, J. J. and Shevac, E. M., eds.), Oxford University Press, New York, pp. 259–273.

    Google Scholar 

  13. Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., and Klein, W. L. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  14. Kalaria, R. N. (1999) Microglia and Alzheimer’s disease. Curr. Opin. Hematol. 6, 15–24.

    Article  PubMed  CAS  Google Scholar 

  15. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380, 345–347.

    Article  PubMed  CAS  Google Scholar 

  16. Le, Y., Yazawa, H., Gong, W., Yu, Z., Ferrans, V. J., Murphy, P. M., and Wang, J. M. (2001) The neurotoxic prion peptide fragment PrP(106-126) is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1. J. Immunol. 166, 1448–1451.

    PubMed  CAS  Google Scholar 

  17. Bae, Y. S., Song, J. Y., Kim, Y., He, R., Ye, R. D., Kwak, J. Y., Suh, P. G., and Ryu, S. H. (2003) Differential activation of formyl peptide receptor signaling by peptide ligands. Mol. Pharmacol. 64, 841–847.

    Article  PubMed  CAS  Google Scholar 

  18. Bae, Y. S., Yi, H. J., Lee, H. Y., Jo, E. J., Kim, J. I., Lee, T. G., Ye, R. D., Kwak, J. Y., and Ryu, S. H. (2003) Differential activation of formyl peptide receptor-like 1 by peptide ligands. J. Immunol. 171, 6807–6813.

    PubMed  CAS  Google Scholar 

  19. Zhang, J. H., Chung, T. D., and Oldenburg, K. R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R03 MH076381-01, U54 MH074425-01, the New Mexico Molecular Libraries Screening Center, the University of New Mexico Shared Flow Cytometry Resource, and Cancer Research and Treatment Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce S. Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Edwards, B.S., Young, S.M., Ivnitsky-Steele, I., Ye, R.D., Prossnitz, E.R., Sklar, L.A. (2009). High-Content Screening: Flow Cytometry Analysis. In: Clemons, P., Tolliday, N., Wagner, B. (eds) Cell-Based Assays for High-Throughput Screening. Methods in Molecular Biology, vol 486. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-545-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-545-3_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-544-6

  • Online ISBN: 978-1-60327-545-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics