Skip to main content

Inflammation-Related Aberrant Patterns of DNA Methylation: Detection and Role in Epigenetic Deregulation of Cancer Cell Transcriptome

  • Protocol
Inflammation and Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 512))

Summary

It is now apparent that epigenetic abnormalities, in particular altered DNA methylation, play a crucial role in the development and progression of human cancers. DNA hypermethylation at promoter CpG islands is now recognized as a third mechanism by which inactivation of tumor suppressor genes occurs. Aberrant CpG island hypermethylation is also frequently observed in chronic inflammation and precancerous lesions, which suggests that it is an early event in tumorigenesis that could serve as a useful tumor marker. A variety of screening techniques have been developed for genome-wide screening of methylation status. Of those, transcriptome analysis coupled with pharmacological unmasking has emerged as a powerful tool for revealing DNA methylation patterns in cancer cells and identifying new tumor marker candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herman, J. G., and Baylin, S. B. (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349, 2042–54.

    Article  CAS  PubMed  Google Scholar 

  2. Baylin, S. B., and Ohm, J. E. (2006) Epige-netic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6, 107–16.

    Article  CAS  PubMed  Google Scholar 

  3. Esteller, M. (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8, 286–98.

    Article  CAS  PubMed  Google Scholar 

  4. Takai, D., and Jones, P. A. (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99, 3740–5.

    Article  CAS  PubMed  Google Scholar 

  5. Feinberg, A. P., and Tycko, B. (2004) The history of cancer epigenetics. Nat Rev Cancer 4, 143–53.

    Article  CAS  PubMed  Google Scholar 

  6. Eads, C. A., Lord, R. V., Kurumboor, S. K., Wickramasinghe, K., Skinner, M. L., Long, T. I., Peters, J. H., DeMeester, T. R., Danen-berg, K. D., Danenberg, P. V., Laird, P. W., and Skinner, K. A. (2000) Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res 60, 5021–26.

    CAS  PubMed  Google Scholar 

  7. Schulmann, K., Sterian, A., Berki, A., Yin, J., Sato, F., Xu, Y., Olaru, A., Wang, S., Mori, Y., Deacu, E., Hamilton, J., Kan, T., Krasna, M. J., Beer, D. G., Pepe, M. S., Abraham, J. M., Feng, Z., Schmiegel, W., Greenwald, B. D., and Meltzer, S. J. (2005) Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene 24, 4138–48.

    CAS  PubMed  Google Scholar 

  8. Kang, G. H., Lee, H. J., Hwang, K. S., Lee, S., Kim, J. H., and Kim, J. S. (2003) Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. Am J Pathol 163, 1551–6.

    Article  CAS  PubMed  Google Scholar 

  9. Chan, A. O., Lam, S. K., Wong, B. C., Wong, W. M., Yuen, M. F., Yeung, Y. H., Hui, W. M., Rashid, A., and Kwong, Y. L. (2003) Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut 52, 502–6.

    Article  CAS  PubMed  Google Scholar 

  10. Maekita, T., Nakazawa, K., Mihara, M., Naka-jima, T., Yanaoka, K., Iguchi, M., Arii, K., Kaneda, A., Tsukamoto, T., Tatematsu, M., Tamura, G., Saito, D., Sugimura, T., Ichinose, M., and Ushijima, T. (2006) High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12, 989–95.

    Article  CAS  PubMed  Google Scholar 

  11. Kaneto, H., Sasaki, S., Yamamoto, H., Itoh, F., Toyota, M., Suzuki, H., Ozeki, I., Iwata, N., Ohmura, T., Satoh, T., Karino, Y., Satoh, T., Toyota, J., Satoh, M., Endo, T., Omata, M., and Imai, K. (2001) Detection of hypermeth-ylation of the p16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut 48, 372–7.

    Article  CAS  PubMed  Google Scholar 

  12. Issa, J. P. , Ahuja, N., Toyota, M., Bronner, M. P., and Brentnall, T. A. (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61, 3573–7.

    CAS  PubMed  Google Scholar 

  13. Sato, F., Harpaz, N., Shibata, D., Xu, Y., Yin, J., Mori, Y., Zou, T. T., Wang, S., Desai, K., Leytin, A., Selaru, F. M., Abraham, J. M., and Meltzer, S. J. (2002) Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Res 62, 1148–51.

    CAS  PubMed  Google Scholar 

  14. Sato, F., Shibata, D., Harpaz, N., Xu, Y., Yin, J., Mori, Y., Wang, S., Olaru, A., Deacu, E., Selaru, F. M., Kimos, M. C., Hytiroglou, P., Young, J., Leggett, B., Gazdar, A. F., Toyooka, S., Abraham, J. M., and Meltzer, S. J. (2002) Aberrant methylation of the HPP1 gene in ulcerative colitis-associated colorectal carcinoma. Cancer Res 62, 6820–2.

    CAS  PubMed  Google Scholar 

  15. Laird, P. W. (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3, 253–66.

    Article  CAS  PubMed  Google Scholar 

  16. Ushijima, T. (2005) Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 5, 223–31.

    Article  CAS  PubMed  Google Scholar 

  17. Toyota, M., Ho, C., Ahuja, N., Jair, K. W., Li, Q., Ohe-Toyota, M., Baylin, S. B., and Issa, J. P. (1999) Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59, 2307–12.

    CAS  PubMed  Google Scholar 

  18. Costello, J. F., Frühwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., Wright, F. A., Feramisco, J. D., Peltomäki, P., Lang, J. C., Schuller, D. E., Yu, L., Bloomfield, C. D., Caligiuri, M. A., Yates, A., Nishikawa, R., Su Huang, H., Petrelli, N. J., Zhang, X., O'Dorisio, M. S., Held, W. A., Cavenee, W. K., and Plass, C. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24, 132–8.

    Article  CAS  PubMed  Google Scholar 

  19. Yamashita, K., Dai, T., Dai, Y., Yamamoto, F., and Perucho, M. (2003) Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell 4, 121–31.

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijen-berg, M. P., Herman, J. G., and Baylin, S. B. (2002) A genomic screen for genes upregu-lated by demethylation and histone deacety-lase inhibition in human colorectal cancer. Nat Genet 31, 141–9.

    Article  CAS  PubMed  Google Scholar 

  21. Yamashita, K., Upadhyay, S., Osada, M., Hoque, M. O., Xiao, Y., Mori, M., Sato, F., Meltzer, S. J., and Sidransky, D. (2002) Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esopha-geal squamous cell carcinoma. Cancer Cell 2, 485–95.

    Article  CAS  PubMed  Google Scholar 

  22. Sato, N., Fukushima, N., Maitra, A., Matsuba-yashi, H., Yeo, C. J., Cameron, J. L., Hruban, R. H., and Goggins, M. (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63, 3735–42.

    CAS  PubMed  Google Scholar 

  23. Schuebel, K. E., Chen, W., Cope, L., Glock-ner, S. C., Suzuki, H., Yi, J. M., Chan, T. A., Neste, L. V., Criekinge, W. V., Bosch, S. V., van Engeland, M., Ting, A. H., Jair, K., Yu, W., Toyota, M., Imai, K., Ahuja, N., Herman, J. G., and Baylin, S. B. (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3, e157.

    Article  Google Scholar 

  24. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996) Meth-ylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93, 9821–6.

    Article  CAS  PubMed  Google Scholar 

  25. Xiong, Z., and Laird, P. W. (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25, 2532–4.

    Article  CAS  PubMed  Google Scholar 

  26. Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Blake, C., Shibata, D., Danenberg, P. V., and Laird, P. W. (2000) MethyLight: a high-throughput assay to measure DNA meth-ylation. Nucleic Acids Res 28, E32.

    Article  CAS  PubMed  Google Scholar 

  27. Colella, S., Shen, L., Baggerly, K. A., Issa, J. P., and Krahe, R. (2003) Sensitive and quantitative universal Pyrosequencing methyla-tion analysis of CpG sites. Biotechniques 35, 146–50.

    CAS  PubMed  Google Scholar 

  28. Toyota, M., Sasaki, Y., Satoh, A., Ogi, K., Kikuchi, T., Suzuki, H., Mita, H., Tanaka, N., Itoh, F., Issa, J. P., Jair, K. W., Schuebel, K. E., Imai, K., and Tokino, T. (2003) Epigenetic inactivation of CHFR in human tumors. Proc Natl Acad Sci U S A 100, 7818–23.

    Article  CAS  PubMed  Google Scholar 

  29. Taniguchi, H., Yamamoto, H., Hirata, T., Miyamoto, N., Oki, M., Nosho, K., Adachi, Y., Endo, T., Imai, K., and Shinomura, Y. (2005) Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 24, 7946–52.

    Article  CAS  PubMed  Google Scholar 

  30. Sato, H., Suzuki, H., Toyota, M., Nojima, M., Maruyama, R., Sasaki, S., Takagi, H., Sogabe, Y. , Sasaki, Y., Idogawa, M., Sonoda, T., Mori, M., Imai, K., Tokino, T., and Shinomura, Y. (2007) Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 28, 2459–66.

    Article  CAS  PubMed  Google Scholar 

  31. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., and Baylin, S. B. (1999) Synergy of demethylation and histone deacety-lase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21, 103–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Suzuki, H., Toyota, M., Kondo, Y., Shinomura, Y. (2009). Inflammation-Related Aberrant Patterns of DNA Methylation: Detection and Role in Epigenetic Deregulation of Cancer Cell Transcriptome. In: Kozlov, S.V. (eds) Inflammation and Cancer. Methods in Molecular Biology™, vol 512. Humana Press. https://doi.org/10.1007/978-1-60327-530-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-530-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-529-3

  • Online ISBN: 978-1-60327-530-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics