Skip to main content

An Expanding Spectrum of Autism Models

From Fixed Developmental Defects to Reversible Functional Impairments

  • Chapter
Autism

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

In this review, we contrast previous models of autism pathogenesis with newer models inspired by some recently appreciated and previously minimally considered pathological and clinical features of the disease. Autism has conventionally been viewed as an incurable behavioral disorder resulting solely from genetic defects impacting brain development. However, emerging evidence suggests that autism affects many organ systems beyond the brain and that some neuropathological and somatic pathophysiological processes are active even into adulthood. We incorporate these newer observations into a model of how this systemic and persistent disease process might impact brain function and ultimately impair behavior through potentially reversible mechanisms. In particular, observations of substantial transient and sometimes enduring increases in function and even losses of the diagnosis challenge researchers to identify pathophysiological mechanisms consistent with this dynamic course and potential plasticity. This broadened appreciation of the disease phenomenology and prognosis of autism calls for mechanistic models that encompass the full range of its features. To this end, our review contrasts several models of autism pathophysiology and lays out their differing underlying assumptions regarding mechanisms. First, we compare models of autism that are based on different underlying biological and experimental perspectives to addressing the question of autism pathogenesis. We contrast a “bottom-up, modular, genes–brain–behavior” model with a more inclusive “middle-out, multi-system biology” model. We then contrast different models that consider autism’s development over time. Beginning with a purely genetic prenatal brain development model, we expand the framework to include early environmental influences, epigenetics, later and ongoing environmental influences, and features consistent with chronic encephalopathy. The implications of these models, particularly the last, are spelled out through a discussion of the functional consequences of one prominent chronic feature, persistent immune activation, and its impact on neural–glial interactions. The implications of these newer models on potential treatments are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herbert MR. Autism: A Brain disorder or a disorder that affects the brain? Clin Neuropsychiatry 2005; 2:354–79.

    Google Scholar 

  2. Horvath K, Perman JA. Autistic disorder and gastrointestinal disease. Curr Opin Pediatr 2002; 14:583–7.

    Article  PubMed  Google Scholar 

  3. Jyonouchi H, Geng L, Ruby A, Reddy C, Zimmerman-Bier B. Evaluation of an association between gastrointestinal symptoms and cytokine production against common dietary proteins in children with autism spectrum disorders. J Pediatr 2005; 146:605–10.

    Article  PubMed  CAS  Google Scholar 

  4. Jyonouchi H, Sun S, Itokazu N. Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology 2002; 46:76–84.

    Article  PubMed  CAS  Google Scholar 

  5. Lucarelli S, Frediani T, Zingoni AM, Ferruzzi F, Giardini O, Quintieri F, et al. Food allergy and infantile autism. Panminerva Med 1995; 37:137–41.

    PubMed  CAS  Google Scholar 

  6. Valicenti-McDermott M, McVicar K, Rapin I, Wershil BK, Cohen H, Shinnar S. Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. J Dev Behav Pediatr 2006; 27: S128–36.

    Article  PubMed  Google Scholar 

  7. Jass JR. The intestinal lesion of autistic spectrum disorder. Eur J Gastroenterol Hepatol 2005; 17:821–2.

    Article  PubMed  Google Scholar 

  8. Afzal N, Murch S, Thirrupathy K, Berger L, Fagbemi A, Heuschkel R. Constipation with acquired megarectum in children with autism. Pediatrics 2003; 112:939–42.

    Article  PubMed  Google Scholar 

  9. Torrente F, Ashwood P, Day R, Machado N, Furlano RI, Anthony A, et al. Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol Psychiatry 2002; 7:375–82, 334.

    Article  PubMed  CAS  Google Scholar 

  10. Hornig M, Mervis R, Hoffman K, Lipkin WI. Infectious and immune factors in neurodevelopmental damage. Mol Psychiatry 2002; 7: S34–5.

    Article  PubMed  Google Scholar 

  11. James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 2006; 141:947–56.

    Google Scholar 

  12. Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin – the antioxidant proteins. Life Sci 2004; 75:2539–49.

    Article  PubMed  CAS  Google Scholar 

  13. Ashwood P, Wills S, Van de Water J. The immune response in autism: a new frontier for autism research. J Leukoc Biol 2006; 80:1–15.

    Article  PubMed  CAS  Google Scholar 

  14. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005; 57:67–81.

    Article  PubMed  CAS  Google Scholar 

  15. Herbert MR, Russo JP, Yang S, Roohi J, Blaxill M, Kahler SG, et al. Autism and environmental genomics. Neurotoxicology 2006; 27:671–84.

    Article  PubMed  CAS  Google Scholar 

  16. Newschaffer CJ, Falb MD, Gurney JG. National autism prevalence trends from United States special education data. Pediatrics 2005; 115:e277–82.

    Article  PubMed  Google Scholar 

  17. Kelley E, Paul JJ, Fein D, Naigles LR. Residual language deficits in optimal outcome children with a history of autism. J Autism Dev Disord 2006; 36:807–28.

    Article  PubMed  Google Scholar 

  18. Fein D, Dixon P, Paul J, Levin H. Pervasive developmental disorder can evolve into ADHD: case illustrations. J Autism Dev Disord 2005; 35:525–34.

    Article  PubMed  Google Scholar 

  19. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th edn. (DSM IV). Washington, DC: APA, 1994.

    Google Scholar 

  20. Redcay E, Courchesne E. When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychiatry 2005; 58:1–9.

    Article  PubMed  Google Scholar 

  21. Herbert MR. Large brains in autism: the challenge of pervasive abnormality. Neuroscientist 2005; 11:417–40.

    Article  PubMed  Google Scholar 

  22. Ashwood P, Van de Water J. Is autism an autoimmune disease? Autoimmun Rev 2004; 3:557–62.

    Article  PubMed  CAS  Google Scholar 

  23. Ashwood P, Van de Water J. A review of autism and the immune response. Clin Dev Immunol 2004; 11:165–74.

    Article  PubMed  Google Scholar 

  24. McGinnis WR. Could oxidative stress from psychosocial stress affect neurodevelopment in autism? J Autism Dev Disord 2007; 37:993–4.

    Article  PubMed  Google Scholar 

  25. MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE, Boon F, et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 2007; 176:149–69.

    Article  PubMed  CAS  Google Scholar 

  26. Kern JK, Jones AM. Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health B Crit Rev 2006; 9:485–99.

    Article  PubMed  CAS  Google Scholar 

  27. Yao Y, Walsh WJ, McGinnis WR, Pratico D. Altered vascular phenotype in autism: correlation with oxidative stress. Arch Neurol 2006; 63:1161–4.

    Article  PubMed  Google Scholar 

  28. Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC. Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 2005; 73:379–384.

    Article  PubMed  CAS  Google Scholar 

  29. Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex 2006; 17:951–61.

    Article  PubMed  Google Scholar 

  30. Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry 2007; 62:270–3.

    Article  PubMed  Google Scholar 

  31. Vargas DL, Bandaru V, Zerrate MC, Zimmerman AW, Haughey N, Pardo CA. Oxidative stress in brain tissues from autistic patients: increased concentration of isoprostanes. IMFAR 2006, 2006; Poster PS2.6.

    Google Scholar 

  32. Perry G, Nunomura A, Harris P, siedlak S, Smith M, Salomon R. Is autism a disease of oxidative stress? Oxidative Stress in Autism Symposium, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 2005; p. 15.

    Google Scholar 

  33. Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, et al. Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 2004; 55:530–40.

    Article  PubMed  Google Scholar 

  34. Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 2004; 127:1811–21.

    Article  PubMed  Google Scholar 

  35. Rippon G, Brock J, Brown C, Boucher J. Disordered connectivity in the autistic brain: challenges for the ‘new psychophysiology'. Int J Psychophysiol 2007; 63:164–72.

    Article  PubMed  Google Scholar 

  36. Happe F, Ronald A, Plomin R. Time to give up on a single explanation for autism. Nat Neurosci 2006; 9:1218–20.

    Article  PubMed  CAS  Google Scholar 

  37. Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, et al. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 1990; 346:362–5.

    Article  PubMed  CAS  Google Scholar 

  38. Anderson MP, Gregory RJ, Thompson S, Souza DW, Paul S, Mulligan RC, et al. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 1991; 253:202–5.

    Article  PubMed  CAS  Google Scholar 

  39. Anderson MP, Rich DP, Gregory RJ, Smith AE, Welsh MJ. Generation of cAMP-activated chloride currents by expression of CFTR. Science 1991; 251:679–82.

    Article  PubMed  CAS  Google Scholar 

  40. Kanner L. Autistic disturbances of affective contact. Nerv Child 1943; 10:217–50.

    Google Scholar 

  41. Jepson B, Johnson J, Wright K. Changing the Course of Autism. Boulder, co, 2007.

    Google Scholar 

  42. Rutter M. Incidence of autism spectrum disorders: changes over time and their meaning. Acta Paediatr 2005; 94:2–15.

    Article  PubMed  CAS  Google Scholar 

  43. Herbert MR, Ziegler DA. Volumetric Neuroimaging and Low-Dose Early-Life exposures: loose coupling of pathogenesis-brain-behavior links. Neurotoxicology 2005; 26:565–72.

    Article  PubMed  CAS  Google Scholar 

  44. Ashwood P, Anthony A, Pellicer AA, Torrente F, Walker-Smith JA, Wakefield AJ. Intestinal lymphocyte populations in children with regressive autism: evidence for extensive mucosal immunopathology. J Clin Immunol 2003; 23:504–17.

    Article  PubMed  Google Scholar 

  45. Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. Science 2005; 307:1909–14.

    Article  PubMed  CAS  Google Scholar 

  46. Elmquist JK, Scammell TE, Saper CB. Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends Neurosci 1997; 20:565–70.

    Article  PubMed  CAS  Google Scholar 

  47. Morton J, Frith U. Causal modelling: a structural approach to developmental psychopathology. In: Cicchetti D, Cohen DJ, editors. Manual of Developmental Psychopathology. New York: John Wiley, 1995:357–390.

    Google Scholar 

  48. Karmiloff-Smith A. The tortuous route from genes to behavior: a neuroconstructivist approach. Cogn Affect Behav Neurosci 2006; 6:9–17.

    Article  PubMed  Google Scholar 

  49. Li Z, Dong T, Proschel C, Noble M. Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function. PLoS Biol 2007; 5:e35.

    Article  PubMed  CAS  Google Scholar 

  50. Werner E, Dawson G. Validation of the phenomenon of autistic regression using home videotapes. Arch Gen Psychiatry 2005; 62:889–95.

    Article  PubMed  CAS  Google Scholar 

  51. Aylward EH, Minshew NJ, Field K, Sparks BF, Singh N. Effects of age on brain volume and head circumference in autism. Neurology 2002; 59:175–83.

    PubMed  CAS  Google Scholar 

  52. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 2005; 23:183–7.

    Article  PubMed  Google Scholar 

  53. Edelson SM, Rimland B. Recovering Autistic Children. San Diego: Autism Research Institute, 2006.

    Google Scholar 

  54. Jensen KF, Catalano SM. Brain morphogenesis and developmental neurotoxicology. In: Slikker W, Chang LW, editors. Developmental Neurotoxicology. San Diego, CA: Academic Press, 1998: 3–41.

    Google Scholar 

  55. Hagberg H, Mallard C. Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol 2005; 18:117–23.

    Article  PubMed  CAS  Google Scholar 

  56. Moore SJ, Turnpenny P, Quinn A, Glover S, Lloyd DJ, Montgomery T, et al. A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet 2000; 37:489–97.

    Article  PubMed  CAS  Google Scholar 

  57. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276:36734–41.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang MM, Yu K, Xiao C, Ruan DY. The influence of developmental periods of sodium valproate exposure on synaptic plasticity in the CA1 region of rat hippocampus. Neurosci Lett 2003; 351:165–8.

    Article  PubMed  CAS  Google Scholar 

  59. Chang Q, Khare G, Dani V, Nelson S, Jaenisch R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 2006; 49:341–8.

    Article  PubMed  CAS  Google Scholar 

  60. Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 2005; 37:31–40.

    Article  PubMed  CAS  Google Scholar 

  61. Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA 2005; 102:12560–5.

    Article  PubMed  CAS  Google Scholar 

  62. Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 2007; 315:1143–7.

    Article  PubMed  CAS  Google Scholar 

  63. Guan Z, Giustetto M, Lomvardas S, Kim JH, Miniaci MC, Schwartz JH, et al. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 2002; 111:483–93.

    Article  PubMed  CAS  Google Scholar 

  64. Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 2004; 42:947–59.

    Article  PubMed  CAS  Google Scholar 

  65. Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 2004; 42:961–72.

    Article  PubMed  CAS  Google Scholar 

  66. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature 2007; 447:178–82.

    Article  PubMed  CAS  Google Scholar 

  67. Charleston JS, Body RL, Bolender RP, Mottet NK, Vahter ME, Burbacher TM. Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure. Neurotoxicology 1996; 17:127–38.

    PubMed  CAS  Google Scholar 

  68. Garg TK, Chang JY. Methylmercury causes oxidative stress and cytotoxicity in microglia: attenuation by 15-deoxy-delta 12, 14-prostaglandin J2. J Neuroimmunol 2006; 171:17–28.

    Article  PubMed  CAS  Google Scholar 

  69. Kim SH, Johnson VJ, Sharma RP. Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: differential modulation of NF-kappaB and p38 MAPK signaling pathways. Nitric Oxide 2002; 7:67–74.

    Article  PubMed  CAS  Google Scholar 

  70. Zurich MG, Eskes C, Honegger P, Berode M, Monnet-Tschudi F. Maturation-dependent neurotoxicity of lead acetate in vitro: implication of glial reactions. J Neurosci Res 2002; 70:108–16.

    Article  PubMed  CAS  Google Scholar 

  71. Campbell A. Inflammation, neurodegenerative diseases, and environmental exposures. Ann N Y Acad Sci 2004; 1035:117–32.

    Article  PubMed  CAS  Google Scholar 

  72. Shanker G, Aschner JL, Syversen T, Aschner M. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res 2004; 128:48–57.

    Article  PubMed  CAS  Google Scholar 

  73. Filipov NM, Seegal RF, Lawrence DA. Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicol Sci 2005; 84:139–48.

    Article  PubMed  CAS  Google Scholar 

  74. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2006; 2:e132.

    Article  PubMed  CAS  Google Scholar 

  75. Lipkin I, Hornig M, Gorman J. The ‘Three Strikes’ concept of autism. Autism Advocate 2006; 45:45.

    Google Scholar 

  76. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005; 25:9275–84.

    Article  PubMed  CAS  Google Scholar 

  77. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007; 55:453–62.

    Article  PubMed  Google Scholar 

  78. Mallard C, Hagberg H. Inflammation-induced preconditioning in the immature brain. Semin Fetal Neonatal Med 2007;12(4):280–6.

    Google Scholar 

  79. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 2003; 23:297–302.

    PubMed  Google Scholar 

  80. Patterson PH. Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 2002; 12:115–8.

    Article  PubMed  CAS  Google Scholar 

  81. Fatemi SH, Earle J, Kanodia R, Kist D, Emamian ES, Patterson PH, et al. Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol 2002; 22:25–33.

    Article  PubMed  Google Scholar 

  82. Curran L, Newschaffer C, Lee L, Crawford S, Johnston M, Zimmerman A. Behaviors associated with fever in children with autism spectrum disorders. Pediatrics 2007; 120(6): e1386–92.

    Google Scholar 

  83. Kelley E, Paul JJ, Fein D, Naigles LR. Residual language deficits in optimal outcome children with a history of autism. J Autism Dev Disord 2006; 36(6):807–28.

    Google Scholar 

  84. Bauman M. Beyond behavior – Biomedical diagnoses in autism spectrum disorders. Autism Advocate 2006; 45:27–29.

    Google Scholar 

  85. Anderson M, Hooker B, Herbert M. Bridging from cells to cognition in autism pathophysiology: biological pathways to defective brain function and plasticity. Am J Biochem Biotechnol 2008; 4(2):167–76.

    Google Scholar 

  86. Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells in vitro. Science 1997; 277:1684–7.

    Article  PubMed  CAS  Google Scholar 

  87. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science 2001; 291:657–61.

    Article  PubMed  CAS  Google Scholar 

  88. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9:260–7.

    Article  PubMed  CAS  Google Scholar 

  89. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003; 6:43–50.

    Article  PubMed  CAS  Google Scholar 

  90. Mountz JM, Tolbert LC, Lill DW, Katholi CR, Liu HG. Functional deficits in autistic disorder: characterization by technetium-99m-HMPAO and SPECT. J Nucl Med 1995; 36:1156–62.

    PubMed  CAS  Google Scholar 

  91. Zilbovicius M, Boddaert N, Belin P, Poline JB, Remy P, Mangin JF, et al. Temporal lobe dysfunction in childhood autism: a PET study. Positron emission tomography. Am J Psychiatry 2000; 157:1988–93.

    Article  PubMed  CAS  Google Scholar 

  92. Chiron C, Leboyer M, Leon F, Jambaque I, Nuttin C, Syrota A. SPECT of the brain in childhood autism: evidence for a lack of normal hemispheric asymmetry. Dev Med Child Neurol 1995; 37:849–60.

    Article  PubMed  CAS  Google Scholar 

  93. Pellerin L. How astrocytes feed hungry neurons. Mol Neurobiol 2005; 32:59–72.

    Article  PubMed  CAS  Google Scholar 

  94. Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004; 129:877–96.

    Article  PubMed  CAS  Google Scholar 

  95. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34:27–9.

    Article  PubMed  CAS  Google Scholar 

  96. Auld VJ, Fetter RD, Broadie K, Goodman CS. Gliotactin, a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell 1995; 81:757–67.

    Article  PubMed  CAS  Google Scholar 

  97. Schulte J, Charish K, Que J, Ravn S, MacKinnon C, Auld VJ. Gliotactin and Discs large form a protein complex at the tricellular junction of polarized epithelial cells in Drosophila. J Cell Sci 2006; 119:4391–401.

    Article  PubMed  CAS  Google Scholar 

  98. Aschner M, Allen JW, Kimelberg HK, LoPachin RM, Streit WJ. Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol 1999; 39:151–73.

    Article  PubMed  CAS  Google Scholar 

  99. Oliet SH, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 2001; 292:923–6.

    Article  PubMed  CAS  Google Scholar 

  100. Wang CM, Chang YY, Kuo JS, Sun SH. Activation of P2X(7) receptors induced GABA release from the RBA-2 type-2 astrocyte cell line through a Cl(-)/HCO(3)(-)-dependent mechanism. Glia 2002; 37:8–18.

    Article  PubMed  Google Scholar 

  101. Fields RD, Burnstock G. Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 2006; 7:423–36.

    Article  PubMed  CAS  Google Scholar 

  102. Petroni A, Blasevich M, Visioli F, Zancocchia B, Caruso D, Galli C. Arachidonic acid cycloxygenase and lipoxygenase pathways are differently activated by platelet activating factor and the calcium-ionophore A23187 in a primary culture of astroglial cells. Brain Res Dev Brain Res 1991; 63:221–7.

    Article  PubMed  CAS  Google Scholar 

  103. Vahter ME, Mottet NK, Friberg LT, Lind SB, Charleston JS, Burbacher TM. Demethylation of methyl mercury in different brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol Appl Pharmacol 1995; 134:273–84.

    Article  PubMed  CAS  Google Scholar 

  104. Ji KA, Yang MS, Jou I, Shong MH, Joe EH. Thrombin induces expression of cytokine-induced SH2 protein (CIS) in rat brain astrocytes: involvement of phospholipase A2, cyclooxygenase, and lipoxygenase. Glia 2004; 48:102–11.

    Article  PubMed  Google Scholar 

  105. Won JS, Im YB, Khan M, Singh AK, Singh I. Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia 2005; 51:13–21.

    Article  PubMed  Google Scholar 

  106. Vaughan CW, Ingram SL, Connor MA, Christie MJ. How opioids inhibit GABA-mediated neurotransmission. Nature 1997; 390:611–4.

    Article  PubMed  CAS  Google Scholar 

  107. Feinmark SJ, Begum R, Tsvetkov E, Goussakov I, Funk CD, Siegelbaum SA, et al. 12-lipoxygenase metabolites of arachidonic acid mediate metabotropic glutamate receptor-dependent long-term depression at hippocampal CA3-CA1 synapses. J Neurosci 2003; 23:11427–35.

    PubMed  CAS  Google Scholar 

  108. Faber ES, Sah P. Opioids inhibit lateral amygdala pyramidal neurons by enhancing a dendritic potassium current. J Neurosci 2004; 24:3031–9.

    Article  PubMed  CAS  Google Scholar 

  109. Newman EA. Glial cell inhibition of neurons by release of ATP. J Neurosci 2003; 23:1659–66.

    PubMed  CAS  Google Scholar 

  110. Ochiishi T, Chen L, Yukawa A, Saitoh Y, Sekino Y, Arai T, et al. Cellular localization of adenosine A1 receptors in rat forebrain: immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody. J Comp Neurol 1999; 411:301–16.

    Article  PubMed  CAS  Google Scholar 

  111. Pape HC. Adenosine promotes burst activity in guinea-pig geniculocortical neurones through two different ionic mechanisms. J Physiol 1992; 447:729–53.

    PubMed  CAS  Google Scholar 

  112. Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, et al. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci USA 2005; 102:1743–8.

    Article  PubMed  CAS  Google Scholar 

  113. Wetherington JP, Lambert NA. Differential desensitization of responses mediated by presynaptic and postsynaptic A1 adenosine receptors. J Neurosci 2002; 22:1248–55.

    PubMed  CAS  Google Scholar 

  114. Haznedar MM, Buchsbaum MS, Hazlett EA, LiCalzi EM, Cartwright C, Hollander E. Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders. Am J Psychiatry 2006; 163:1252–63.

    Article  PubMed  Google Scholar 

  115. Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, et al. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 2006; 177:583–92.

    PubMed  CAS  Google Scholar 

  116. Parri HR, Crunelli V. The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience 2003; 120:979–92.

    Article  PubMed  CAS  Google Scholar 

  117. Parri HR, Crunelli V. Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport 2001; 12:3897–900.

    Article  PubMed  CAS  Google Scholar 

  118. Lin SC, Bergles DE. Synaptic signaling between neurons and glia. Glia 2004; 47:290–8.

    Article  PubMed  Google Scholar 

  119. Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001; 2:685–94.

    Article  PubMed  CAS  Google Scholar 

  120. Grandin T. Thinking in Pictures. NY: Vintage, 1996.

    Google Scholar 

  121. Iversen P. Strange Son. Riverhead trade, NY: Penguin, 2007.

    Google Scholar 

  122. Mottron L, Mineau S, Martel G, Bernier CS, Berthiaume C, Dawson M, et al. Lateral glances toward moving stimuli among young children with autism: Early regulation of locally oriented perception? Dev Psychopathol 2007; 19:23–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Herbert, M.R., Anderson, M.P. (2008). An Expanding Spectrum of Autism Models. In: Autism. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-60327-489-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-489-0_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-488-3

  • Online ISBN: 978-1-60327-489-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics