Skip to main content

Biological Theories of Depression and Implications for Current and New Treatments

  • Chapter
  • First Online:
Pharmacotherapy of Depression

Abstract

Unipolar major depressive disorder is a common condition that has both emotional (mood and anxiety) and physical aspects (1). The physical manifestations are common features of depression present in up to 80% of depressed patients (2). These physical symptoms occur in nearly all body systems and are often the presenting features in the nonpsychiatric setting. The most common physical symptoms are sleep disruption, fatigue, pain and discomfort, and appetite disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fawcett J, Kravitz HM. Anxiety syndromes and their relationship to depressive illness. J Clin Psychiatry. 1983;44(8 Pt 2):8–11.

    CAS  PubMed  Google Scholar 

  2. Gerber PD, Barrett JE, Barrett JA, Oxman TE, Manheimer E, Smith R, et al. The relationship of presenting physical complaints to depressive symptoms in primary care patients. J Gen Intern Med. 1992;7(2):170–3.

    Article  CAS  PubMed  Google Scholar 

  3. Posse M, Hallstrom T. Depressive disorders among somatizing patients in primary health care. Acta Psychiatr Scand. 1998;98(3):187–92.

    Article  CAS  PubMed  Google Scholar 

  4. Kroenke K, Price RK. Symptoms in the community. Prevalence, classification, and psychiatric comorbidity. Arch Intern Med. 1993;153(21):2474–80.

    Article  CAS  PubMed  Google Scholar 

  5. Kendler KS, Aggen SH. Time, memory and the heritability of major depression. Psychol Med. 2001;31(5):923–8.

    Article  CAS  PubMed  Google Scholar 

  6. Wurtman RJ. Genes, stress, and depression. Metabolism. 2005;54(5 Suppl 1):16–9.

    Article  CAS  PubMed  Google Scholar 

  7. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301(5631):386–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274(5292):1527–31.

    Article  CAS  PubMed  Google Scholar 

  9. Hariri AR, Tessitore A, Mattay VS, Fera F, Weinberger DR. The amygdala response to emotional stimuli: a comparison of faces and scenes. Neuroimage. 2002;17(1):317–23.

    Article  PubMed  Google Scholar 

  10. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry. 2010;167(5):509–27.

    Article  PubMed  Google Scholar 

  11. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36(12):1319–25.

    Article  CAS  PubMed  Google Scholar 

  12. Horstmann S, Binder EB. Pharmacogenomics of antidepressant drugs. Pharmacol Ther. 2009;124(1):57–73.

    Article  CAS  PubMed  Google Scholar 

  13. Levinson DF. The genetics of depression: a review. Biol Psychiatry. 2006;60(2):84–92.

    Article  CAS  PubMed  Google Scholar 

  14. Warner V, Weissman MM, Fendrich M, Wickramaratne P, Moreau D. The course of major depression in the offspring of depressed parents. Incidence, recurrence, and recovery. Arch Gen Psychiatry. 1992;49(10):795–801.

    Article  CAS  PubMed  Google Scholar 

  15. Hammen C, Burge D, Burney E, Adrian C. Longitudinal study of diagnoses in children of women with unipolar and bipolar affective disorder. Arch Gen Psychiatry. 1990;47(12):1112–7.

    Article  CAS  PubMed  Google Scholar 

  16. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902.

    Article  CAS  PubMed  Google Scholar 

  17. Kendler KS, Walters EE, Neale MC, Kessler RC, Heath AC, Eaves LJ. The structure of the genetic and environmental risk factors for six major psychiatric disorders in women. Phobia, generalized anxiety disorder, panic disorder, bulimia, major depression, and alcoholism. Arch Gen Psychiatry. 1995;52(5):374–83.

    Article  CAS  PubMed  Google Scholar 

  18. Holmes SJ, Robins LN. The influence of childhood disciplinary experience on the development of alcoholism and depression. J Child Psychol Psychiatry. 1987;28(3):399–415.

    Article  CAS  PubMed  Google Scholar 

  19. Magarinos AM, Deslandes A, McEwen BS. Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol. 1999;371(2–3):113–22.

    Article  CAS  PubMed  Google Scholar 

  20. Kaufman J, Plotsky PM, Nemeroff CB, Charney DS. Effects of early adverse experiences on brain structure and function: clinical implications. Biol Psychiatry. 2000;48(8):778–90.

    Article  CAS  PubMed  Google Scholar 

  21. Lopez JF, Akil H, Watson SJ. Neural circuits mediating stress. Biol Psychiatry. 1999;46(11):1461–71.

    Article  CAS  PubMed  Google Scholar 

  22. Duman RS, Charney DS. Cell atrophy and loss in major depression. Biol Psychiatry. 1999;45(9):1083–4.

    Article  CAS  PubMed  Google Scholar 

  23. Duman RS, Malberg J, Nakagawa S, D’Sa C. Neuronal plasticity and survival in mood ­disorders. Biol Psychiatry. 2000;48(8):732–9.

    Article  CAS  PubMed  Google Scholar 

  24. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20(24):9104–10.

    CAS  PubMed  Google Scholar 

  25. Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry. 2000;48(8):766–77.

    Article  CAS  PubMed  Google Scholar 

  26. Sheline YI. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry. 2000;48(8):791–800.

    Article  CAS  PubMed  Google Scholar 

  27. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 1999;156(5):675–82.

    CAS  PubMed  Google Scholar 

  28. Drevets WC, Price JL, Simpson JR, Jr., Todd RD, Reich T, Vannier M, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386(6627):824–7.

    Article  CAS  PubMed  Google Scholar 

  29. Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry. 2007;61(2):198–209.

    Article  PubMed  Google Scholar 

  30. Matthews SC, Strigo IA, Simmons AN, Yang TT, Paulus MP. Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. J Affect Disord. 2008;111(1):13–20.

    Article  PubMed  Google Scholar 

  31. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    Article  CAS  PubMed  Google Scholar 

  32. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67(2):110–6.

    Article  PubMed  Google Scholar 

  33. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213(1–2):93–118.

    Article  PubMed  Google Scholar 

  34. Hauger RL, Risbrough V, Brauns O, Dautzenberg FM. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets. 2006;5(4):453–79.

    Article  CAS  PubMed  Google Scholar 

  35. Owens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev. 1991;43(4):425–73.

    CAS  PubMed  Google Scholar 

  36. Koenig JI. Pituitary gland: neuropeptides, neurotransmitters and growth factors. Toxicol Pathol. 1989;17(2):256–65.

    Article  CAS  PubMed  Google Scholar 

  37. Francis DD, Caldji C, Champagne F, Plotsky PM, Meaney MJ. The role of corticotropin-releasing factor – norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biol Psychiatry. 1999;46(9):1153–66.

    Article  CAS  PubMed  Google Scholar 

  38. McAllister-Williams RH, Ferrier IN, Young AH. Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychol Med. 1998;28(3):573–84.

    Article  CAS  PubMed  Google Scholar 

  39. Jezova D, Ochedalski T, Glickman M, Kiss A, Aguilera G. Central corticotropin-releasing hormone receptors modulate hypothalamic-pituitary-adrenocortical and sympathoadrenal activity during stress. Neuroscience. 1999;94(3):797–802.

    Article  CAS  PubMed  Google Scholar 

  40. Sachar EJ, Hellman L, Roffwarg HP, Halpern FS, Fukushima DK, Gallagher TF. Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Arch Gen Psychiatry. 1973;28(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  41. Carroll BJ. Use of the dexamethasone suppression test in depression. J Clin Psychiatry. 1982;43(11 Pt 2):44–50.

    CAS  PubMed  Google Scholar 

  42. Carroll BJ, Curtis GC, Mendels J. Neuroendocrine regulation in depression. II. Discrimination of depressed from nondepressed patients. Arch Gen Psychiatry. 1976;33(9):1051–8.

    Article  CAS  PubMed  Google Scholar 

  43. Arana GW, Baldessarini RJ, Ornsteen M. The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Commentary and review. Arch Gen Psychiatry. 1985;42(12):1193–204.

    Article  CAS  PubMed  Google Scholar 

  44. Nathan KI, Musselman DL, Schatzberg AS, Nemeroff CB. Biology of mood disorders. In: Schatzberg AF, Nemeroff CB, editors. The American Psychiatric Press Textbook of Psychopharmacology. Washington, DC: The American Psychiatric Press; 1995. p. 439–78.

    Google Scholar 

  45. Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science. 1984;226(4680):1342–4.

    Article  CAS  PubMed  Google Scholar 

  46. Gold MS, Pottash AL, Extein I. “Symptomless” autoimmune thyroiditis in depression. Psychiatry Res. 1982;6(3):261–9.

    Article  CAS  PubMed  Google Scholar 

  47. Gold PW, Loriaux DL, Roy A, Kling MA, Calabrese JR, Kellner CH, et al. Responses to corticotropin-releasing hormone in the hypercortisolism of depression and Cushing’s disease. Pathophysiologic and diagnostic implications. N Engl J Med. 1986;314(21):1329–35.

    Article  CAS  PubMed  Google Scholar 

  48. Luo X, Kiss A, Rabadan-Diehl C, Aguilera G. Regulation of hypothalamic and pituitary corticotropin-releasing hormone receptor messenger ribonucleic acid by adrenalectomy and glucocorticoids. Endocrinology. 1995;136(9):3877–83.

    Article  CAS  PubMed  Google Scholar 

  49. Kant GJ, Leu JR, Anderson SM, Mougey EH. Effects of chronic stress on plasma corticosterone, ACTH and prolactin. Physiol Behav. 1987;40(6):775–9.

    Article  CAS  PubMed  Google Scholar 

  50. Irwin J, Ahluwalia P, Zacharko RM, Anisman H. Central norepinephrine and plasma corticosterone following acute and chronic stressors: influence of social isolation and handling. Pharmacol Biochem Behav. 1986;24(4):1151–4.

    Article  CAS  PubMed  Google Scholar 

  51. Stanton ME, Gutierrez YR, Levine S. Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behav Neurosci. 1988;102(5):692–700.

    Article  CAS  PubMed  Google Scholar 

  52. Levine S, Atha K, Wiener SG. Early experience effects on the development of fear in the squirrel monkey. Behav Neural Biol. 1993;60(3):225–33.

    Article  CAS  PubMed  Google Scholar 

  53. McEwen BS. Protective and damaging effects of stress mediators: central role of the brain. Prog Brain Res. 2000;122:25–34.

    Article  CAS  PubMed  Google Scholar 

  54. Lopez JF, Chalmers DT, Little KY, Watson SJ. A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry. 1998;43(8):547–73.

    Article  CAS  PubMed  Google Scholar 

  55. Purba JS, Hoogendijk WJ, Hofman MA, Swaab DF. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry. 1996;53(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  56. Raadsheer FC, van Heerikhuize JJ, Lucassen PJ, Hoogendijk WJ, Tilders FJ, Swaab DF. Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiatry. 1995;152(9):1372–6.

    CAS  PubMed  Google Scholar 

  57. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A. 1996;93(9):3908–13.

    Article  CAS  PubMed  Google Scholar 

  58. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci U S A. 2003;100(3):1387–92.

    Article  CAS  PubMed  Google Scholar 

  59. Sapolsky RM, Krey LC, McEwen BS. Prolonged glucocorticoid exposure reduceshippocampal neuron number: implications for aging. J Neurosci. 1985;5(5):1222–7.

    CAS  PubMed  Google Scholar 

  60. Bremner JD. Does stress damage the brain? Biol Psychiatry. 1999;45(7):797–805.

    Article  CAS  PubMed  Google Scholar 

  61. Ohgoh M, Kimura M, Ogura H, Katayama K, Nishizawa Y. Apoptotic cell death of cultured cerebral cortical neurons induced by withdrawal of astroglial trophic support. Exp Neurol. 1998;149(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  62. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry. 1999;46(11):1472–9.

    Article  CAS  PubMed  Google Scholar 

  63. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  64. Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10(9):1110–5.

    Article  CAS  PubMed  Google Scholar 

  65. Alexopoulos GS, Young RC, Meyers BS, Abrams RC, Shamoian CA. Late-onset depression. Psychiatr Clin North Am. 1988;11(1):101–15.

    CAS  PubMed  Google Scholar 

  66. Koenderink MJ, Uylings HB, Mrzljak L. Postnatal maturation of the layer III pyramidal neurons in the human prefrontal cortex: a quantitative Golgi analysis. Brain Res. 1994;653(1–2):173–82.

    Article  CAS  PubMed  Google Scholar 

  67. Young LT. Postreceptor pathways for signal transduction in depression and bipolar disorder. J Psychiatry Neurosci. 2001;26(Suppl):S17–22.

    PubMed  Google Scholar 

  68. Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM. Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci. 1989;9(5):1705–11.

    CAS  PubMed  Google Scholar 

  69. Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992;588(2):341–5.

    Article  CAS  PubMed  Google Scholar 

  70. Endo Y, Nishimura JI, Kobayashi S, Kimura F. Chronic stress exposure influences local cerebral blood flow in the rat hippocampus. Neuroscience. 1999;93(2):551–5.

    Article  CAS  PubMed  Google Scholar 

  71. Sapolsky RM, Krey LC, McEwen BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986;7(3):284–301.

    Article  CAS  PubMed  Google Scholar 

  72. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with ­prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10(9):2897–902.

    CAS  PubMed  Google Scholar 

  73. Woolley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990;531(1–2):225–31.

    Article  CAS  PubMed  Google Scholar 

  74. Starkman MN, Gebarski SS, Berent S, Schteingart DE. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry. 1992;32(9):756–65.

    Article  CAS  PubMed  Google Scholar 

  75. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS. Hippocampal volume reduction in major depression. Am J Psychiatry. 2000;157(1):115–8.

    CAS  PubMed  Google Scholar 

  76. Herman JP, Schafer MK, Young EA, Thompson R, Douglass J, Akil H, et al. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J Neurosci. 1989;9(9):3072–82.

    CAS  PubMed  Google Scholar 

  77. Feldman S, Conforti N. Participation of the dorsal hippocampus in the glucocorticoid ­feedback effect on adrenocortical activity. Neuroendocrinology. 1980;30(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  78. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance ­imaging study. Br J Psychiatry. 1998;172:527–32.

    Article  CAS  PubMed  Google Scholar 

  79. McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 1999;22:295–318.

    Article  CAS  PubMed  Google Scholar 

  80. Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 1995;15(3 Pt 1):1768–77.

    CAS  PubMed  Google Scholar 

  81. Hashimoto K. Brain derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci. 2010;64:341–57.

    Article  CAS  PubMed  Google Scholar 

  82. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251–61.

    CAS  PubMed  Google Scholar 

  83. Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet. 1998;352(9142):1754–5.

    Article  CAS  PubMed  Google Scholar 

  84. Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci. 1996;16(7):2365–72.

    CAS  PubMed  Google Scholar 

  85. Bayer TA, Schramm M, Feldmann N, Knable MB, Falkai P. Antidepressant drug exposure is associated with mRNA levels of tyrosine receptor kinase B in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2000;24(6):881–8.

    Article  CAS  PubMed  Google Scholar 

  86. Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci. 1997;8(6):389–404.

    Article  CAS  PubMed  Google Scholar 

  87. Sulser F. The role of CREB and other transcription factors in the pharmacotherapy and etiology of depression. Ann Med. 2002;34(5):348–56.

    Article  CAS  PubMed  Google Scholar 

  88. Holsboer F. Current theories on the pathophysiology of mood disorders. In: Montgomery SA, Halbreich U, editors. Pharmacology for Mood, Anxiety, and Cognitive Disorders. Washington, DC: The American Psychiatric Press; 2000. p. 13–35.

    Google Scholar 

  89. Prange AJ, Loosen PT, Wilson IC. The therapeutic use of hormones of the thyroid axis in depression. In: Post RM, Ballenger JC, editors. Neurobiology of Mood Disorders, Frontiers of Clinical Neuroscience. New York: Marcel Dekker; 1990. p. 311–20.

    Google Scholar 

  90. Bauer MS, Whybrow PC, Winokur A. Rapid cycling bipolar affective disorder. I. Association with grade I hypothyroidism. Arch Gen Psychiatry. 1990;47(5):427–32.

    Article  CAS  PubMed  Google Scholar 

  91. Mendlewicz J, Linkowski P, Kerkhofs M, Desmedt D, Golstein J, Copinschi G, et al. Diurnal hypersecretion of growth hormone in depression. J Clin Endocrinol Metab. 1985;60(3):505–12.

    Article  CAS  PubMed  Google Scholar 

  92. Powell LH, Lovallo WR, Matthews KA, Meyer P, Midgley AR, Baum A, et al. Physiologic markers of chronic stress in premenopausal, middle-aged women. Psychosom Med. 2002;64(3):502–9.

    CAS  PubMed  Google Scholar 

  93. Siever LJ, Uhde TW, Jimerson DC, Lake CR, Silberman ER, Post RM, et al. Differential inhibitory noradrenergic responses to clonidine in 25 depressed patients and 25 normal control subjects. Am J Psychiatry. 1984;141(6):733–41.

    CAS  PubMed  Google Scholar 

  94. Amsterdam JD, Maislin G, Skolnick B, Berwish N, Winokur A. Multiple hormone responses to clonidine administration in depressed patients and healthy volunteers. Biol Psychiatry. 1989;26(3):265–78.

    Article  CAS  PubMed  Google Scholar 

  95. Laakmann G, Hinz A, Voderholzer U, Daffner C, Muller OA, Neuhauser H, et al. The influence of psychotropic drugs and releasing hormones on anterior pituitary hormone secretion in healthy subjects and depressed patients. Pharmacopsychiatry. 1990;23(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  96. Agren H, Mefford IN, Rudorfer MV, Linnoila M, Potter WZ. Interacting neurotransmitter systems. A non-experimental approach to the 5HIAA-HVA correlation in human CSF. J Psychiatr Res. 1986;20(3):175–93.

    Article  CAS  PubMed  Google Scholar 

  97. Rubinow DR, Gold PW, Post RM, Ballenger JC, Cowdry R, Bollinger J, et al. CSF somatostatin in affective illness. Arch Gen Psychiatry. 1983;40(4):409–12.

    Article  CAS  PubMed  Google Scholar 

  98. Siever LJ, Davis KL. Overview: toward a dysregulation hypothesis of depression. Am J Psychiatry. 1985;142(9):1017–31.

    CAS  PubMed  Google Scholar 

  99. Mitchell P, Smythe G. Hormonal responses to fenfluramine in depressed and control ­subjects. J Affect Disord. 1990;19(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  100. O’Keane V, Dinan TG. Prolactin and cortisol responses to d-fenfluramine in major depression: evidence for diminished responsivity of central serotonergic function. Am J Psychiatry. 1991;148(8):1009–15.

    PubMed  Google Scholar 

  101. Price LH, Charney DS, Delgado PL, Heninger GR. Serotonin function and depression: neuroendocrine and mood responses to intravenous l-tryptophan in depressed patients and healthy comparison subjects. Am J Psychiatry. 1991;148(11):1518–25.

    CAS  PubMed  Google Scholar 

  102. Golden RN, Hsiao JK, Lane E, Ekstrom D, Rogers S, Hicks R, et al. Abnormal neuroendocrine responsivity to acute i.v. clomipramine challenge in depressed patients. Psychiatry Res. 1990;31(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  103. Golden RN, Ekstrom D, Brown TM, Ruegg R, Evans DL, Haggerty JJ, Jr., et al. Neuroendocrine effects of intravenous clomipramine in depressed patients and healthy ­subjects. Am J Psychiatry. 1992;149(9):1168–75.

    CAS  PubMed  Google Scholar 

  104. Kripke DF. Critical interval hypotheses for depression. Chronobiol Int. 1984;1(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  105. Lewy AJ. Circadian phase sleep and mood disorders. In: David KL, Charney DS, Coyle JT, Nemeroff CB, editors. Neuropsychopharmacology, The Fifth Generation of Progress. New York: Lippincott Williams & Wilkins; 2002. p. 1879–93.

    Google Scholar 

  106. Petitto JM, Folds JD, Ozer H, Quade D, Evans DL. Abnormal diurnal variation in circulating natural killer cell phenotypes and cytotoxic activity in major depression. Am J Psychiatry. 1992;149(5):694–6.

    CAS  PubMed  Google Scholar 

  107. Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry. 2008;165(5):617–20.

    Article  PubMed  Google Scholar 

  108. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965;122(5):509–22.

    CAS  PubMed  Google Scholar 

  109. Blier P, de Montigny C. Clarifications on the effects of 5-HT1A agonists and selective 5-HT reuptake inhibitors on the 5-HT system. Neuropsychopharmacology. 1996;15(2):213–6.

    Article  CAS  PubMed  Google Scholar 

  110. Artigas F, Romero L, de Montigny C, Blier P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci. 1996;19(9):378–83.

    Article  CAS  PubMed  Google Scholar 

  111. Levine LR, Potter WZ. The 5HT1A receptor: an unkept promise? Curr Opin CNS Invest Drugs. 1999;1:448–52.

    CAS  Google Scholar 

  112. Griffith R, Sutin J. Reactive astrocyte formation in vivo is regulated by noradrenergic axons. J Comp Neurol. 1996;371(3):362–75.

    Article  CAS  PubMed  Google Scholar 

  113. Marek GJ. A novel approach to the identification of psychiatric drugs; serotonin-glutamate interactions in the prefrontal cortex. CNS Drug Rev. 2000;6:206–18.

    Article  CAS  Google Scholar 

  114. Baker KG, Halliday GM, Hornung JP, Geffen LB, Cotton RG, Tork I. Distribution, morphology and number of monoamine-synthesizing and substance P-containing neurons in the human dorsal raphe nucleus. Neuroscience. 1991;42(3):757–75.

    Article  CAS  PubMed  Google Scholar 

  115. Steinberg R, Alonso R, Griebel G, Bert L, Jung M, Oury-Donat F, et al. Selective blockade of neurokinin-2 receptors produces antidepressant-like effects associated with reduced corticotropin-releasing factor function. J Pharmacol Exp Ther. 2001;299(2):449–58.

    CAS  PubMed  Google Scholar 

  116. Delgado PL, Price LH, Miller HL, Salomon RM, Aghajanian GK, Heninger GR, et al. Serotonin and the neurobiology of depression. Effects of tryptophan depletion in drug-free depressed patients. Arch Gen Psychiatry. 1994;51(11):865–74.

    Article  CAS  PubMed  Google Scholar 

  117. Nishizawa S, Benkelfat C, Young S. Differences between male and female in rates of seretonin synthesis in human brain. Proc Natl Acad Sci U S A. 1997;94:5308–13.

    Article  CAS  PubMed  Google Scholar 

  118. Ellis PM, Salmud C. Is platelet imipramine binding reduced in depression? A meta-analysis. Biol Psychiatry. 1994;36:292–9.

    Article  CAS  PubMed  Google Scholar 

  119. Stockmeier CA, Dilley GE, Shapiro LA, Overholser JC, Thompson PA, Meltzer HY. Serotonin receptors in suicide victims with major depression. Neuropsychopharmacology. 1997;16(2):162–73.

    Article  CAS  PubMed  Google Scholar 

  120. Staley KJ, Longacher M, Bains JS, Yee A. Presynaptic modulation of CA3 network activity. Nat Neurosci. 1998;1(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  121. Fujita M, Charney DS, Innis RB. Imaging serotonergic neurotransmission in depression: hippocampal pathophysiology may mirror global brain alterations. Biol Psychiatry. 2000;48(8):801–12.

    Article  CAS  PubMed  Google Scholar 

  122. Linnoila VM, Virkkunen M. Aggression, suicidality, and serotonin. J Clin Psychiatry. 1992;53(Suppl):46–51.

    PubMed  Google Scholar 

  123. Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA. 1998;95(24):14476–81.

    Article  CAS  PubMed  Google Scholar 

  124. Julius D. Serotonin receptor knockouts: a moody subject. Proc Natl Acad Sci USA. 1998;95(26):15153–4.

    Article  CAS  PubMed  Google Scholar 

  125. Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, et al. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci U S A. 1998;95(25):15049–54.

    Article  CAS  PubMed  Google Scholar 

  126. Miller HL, Delgado PL, Salomon RM, Heninger GR, Charney DS. Effects of alpha-methyl-para-tyrosine (AMPT) in drug-free depressed patients. Neuropsychopharmacology. 1996;14(3):151–7.

    Article  CAS  PubMed  Google Scholar 

  127. Woodward DJ, Moises HC, Waterhouse BD, Hoffer BJ, Freedman R. Modulatory actions of norepinephrine in the central nervous system. Fed Proc. 1979;38(7):2109–16.

    CAS  PubMed  Google Scholar 

  128. Aston-Jones G. Norepinephrine. In: David K, Charney DS, Coyle JT, Nemeroff CB, editors. The Fifth Generation of Progress. New York: Lippincott Williams & Wilkins; 2002. p. 47–58.

    Google Scholar 

  129. Abercrombie ED, Jacobs BL. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli.J Neurosci. 1987;7(9):2837–43.

    CAS  PubMed  Google Scholar 

  130. Hellhammer DH, Hingtgen JN, Wade SE, Shea PA, Aprison MH. Serotonergic changes in specific areas of rat brain associated with activity – stress gastric lesions. Psychosom Med. 1983;45(2):115–22.

    CAS  PubMed  Google Scholar 

  131. Lehnert H, Reinstein DK, Strowbridge BW, Wurtman RJ. Neurochemical and behavioral consequences of acute, uncontrollable stress: effects of dietary tyrosine. Brain Res. 1984;303(2):215–23.

    Article  CAS  PubMed  Google Scholar 

  132. Rosenblatt S, Chanley JD, Leighton WP. The investigation of adrenergic metabolism with 7H3-norepinephrine in psychiatric disorders. II. Temporal changes in the distribution of urinary tritiated metabolites in affective disorders. J Psychiatr Res. 1969;6(4):321–33.

    Article  CAS  PubMed  Google Scholar 

  133. Potter WZ, Manji HK. Catecholamines in depression: an update. Clin Chem. 1994;40(2):279–87.

    CAS  PubMed  Google Scholar 

  134. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and TrkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15(11):7539–47.

    CAS  PubMed  Google Scholar 

  135. Vaidya VA, Marek GJ, Aghajanian GK, Duman RS. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex.J Neurosci. 1997;17(8):2785–95.

    CAS  PubMed  Google Scholar 

  136. Rajkowska G. Histopathology of the prefrontal cortex in major depression: what does it tell us about dysfunctional monoaminergic circuits? Prog Brain Res. 2000;126:397–412.

    Article  CAS  PubMed  Google Scholar 

  137. Manier DH, Shelton RC, Sulser F. Noradrenergic antidepressants: does chronic treatment increase or decrease nuclear CREB-P? J Neural Transm. 2002;109(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  138. Osman O, Potter W. Potentiation of dopamine in the treatment of refractory depression. In: Amsterdam JD, editor. Advances in Neuropsychiatry and Psychopharmacology: Refractory Depression. New York: Raven; 1991. p. 41–52.

    Google Scholar 

  139. Wilner P. Dopaminergic mechanisms in depression and mania. In: Bloom F, Kupfer D, editors. Psychopharmacology: The Fourth Generation of Progress. New York: Raven; 1995. p. 921–31.

    Google Scholar 

  140. Rush AJ, Ryan N. Current and emerging therpeutics for depression. In: Davis K, Harney D, Coyle J, Nemeroff CB, editors. Neuropsychopharmacology: The Fifth Generation of Progress. Philadelphia, PA: Lippincott Williams & Wilkins; 2002. p. 1081–95.

    Google Scholar 

  141. Garlow S, Musselman D, Nemreoff C. The neurochemistry of mood disorders: clinical studies. In: Davison R, Post R, editors. Neurobiology of Mental Illness. New York: Oxford Press; 1999. p. 348–64.

    Google Scholar 

  142. Roy A, Pickar D, Douillet P, Karoum F, Linnoila M. Urinary monoamines and monoamine metabolites in subtypes of unipolar depressive disorder and normal controls. Psychol Med. 1986;16(3):541–6.

    Article  CAS  PubMed  Google Scholar 

  143. Reddy PL, Khanna S, Subhash MN, Channabasavanna SM, Rao BS. CSF amine metabolites in depression. Biol Psychiatry. 1992;31(2):112–8.

    Article  CAS  PubMed  Google Scholar 

  144. D’Haenen H A, Bossuyt A. Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol Psychiatry. 1994;35(2):128–32.

    Article  PubMed  Google Scholar 

  145. Ebert D, Feistel H, Loew T, Pirner A. Dopamine and depression – striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacology (Berl). 1996;126(1):91–4.

    Article  CAS  Google Scholar 

  146. Larish R, Klimke A, Vosberg H, Gaebel W, Mueller-Gaertner HW. Cingulate function in depression. Neuroreport. 1997;8(15):i–ii.

    CAS  PubMed  Google Scholar 

  147. Klimek V, Schenck JE, Han H, Stockmeier CA, Ordway GA. Dopaminergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biol Psychiatry. 2002;52(7):740–8.

    Article  CAS  PubMed  Google Scholar 

  148. Wong DT, Bymaster FP. Dual serotonin and noradrenaline uptake inhibitor class of antidepressants potential for greater efficacy or just hype? Prog Drug Res. 2002;58:169–222.

    Article  CAS  PubMed  Google Scholar 

  149. Lindley SE, Bengoechea TG, Schatzberg AF, Wong DL. Glucocorticoid effects on mesotelencephalic dopamine neurotransmission. Neuropsychopharmacology. 1999;21(3):399–407.

    Article  CAS  PubMed  Google Scholar 

  150. Lyons DM, Lopez JM, Yang C, Schatzberg AF. Stress-level cortisol treatment impairs inhibitory control of behavior in monkeys. J Neurosci. 2000;20(20):7816–21.

    CAS  PubMed  Google Scholar 

  151. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.

    Article  CAS  PubMed  Google Scholar 

  152. Baune BT, Dannlowski U, Domschke K, Janssen DG, Jordan MA, Ohrmann P, et al. The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biol Psychiatry. 2010;67(6):543–9.

    Article  CAS  PubMed  Google Scholar 

  153. Mantyh PW, Hunt SP, Maggio JE. Substance P receptors: localization by light microscopic autoradiography in rat brain using [3H]SP as the radioligand. Brain Res. 1984;307(1–2):147–65.

    Article  CAS  PubMed  Google Scholar 

  154. Arai H, Emson PC. Regional distribution of neuropeptide K and other tachykinins (neurokinin A, neurokinin B and substance P) in rat central nervous system. Brain Res. 1986;399(2):240–9.

    Article  CAS  PubMed  Google Scholar 

  155. Hokfrlt T, Johansson O, Holets VR, Meister B, Melander T. Distribution of neuropeptides with special reference to their coexistence with clasical transmitters. In: Meltzer H, editor. Psychopharmacology: The Third Generation of Progress. New York: Raven Press; 1987. p. 401–16.

    Google Scholar 

  156. Chang HM, Wang L, Zhang XP, Kream RM, Yeh ET. Modulation of substance P release in primary sensory neurons by misoprostol and prostaglandins. Am J Ther. 1996;3(4):276–9.

    Article  PubMed  Google Scholar 

  157. Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A. 2002;99(12):8400–5.

    Article  CAS  PubMed  Google Scholar 

  158. Haddjeri N, Blier P. Sustained blockade of neurokinin-1 receptors enhances serotonin ­neurotransmission. Biol Psychiatry. 2001;50(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  159. Liu R, Ding Y, Aghajanian GK. Neurokinins activate local glutamatergic inputs to serotonergic neurons of the dorsal raphe nucleus. Neuropsychopharmacology. 2002;27(3):329–40.

    Article  CAS  PubMed  Google Scholar 

  160. Millan MJ, Lejeune F, De Nanteuil G, Gobert A. Selective blockade of neurokinin (NK)(1) receptors facilitates the activity of adrenergic pathways projecting to frontal cortex and dorsal hippocampus in rats. J Neurochem. 2001;76(6):1949–54.

    Article  CAS  PubMed  Google Scholar 

  161. File SE. Anxiolytic action of a neurokinin 1 receptor antagonist in the social interaction test. Pharmacol Biochem Behav. 1997;58(3):747–52.

    Google Scholar 

  162. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998;281(5383):1640–5.

    Article  CAS  PubMed  Google Scholar 

  163. Rupniak NM, Carlson EC, Harrison T, Oates B, Seward E, Owen S, et al. Pharmacological blockade or genetic deletion of substance P (NK(1)) receptors attenuates neonatal vocalisation in guinea-pigs and mice. Neuropharmacology. 2000;39(8):1413–21.

    Article  CAS  PubMed  Google Scholar 

  164. Takayama H, Ota Z, Ogawa N. Effect of immobilization stress on neuropeptides and their receptors in rat central nervous system. Regul Pept. 1986;15(3):239–48.

    Article  CAS  PubMed  Google Scholar 

  165. Bannon MJ, Deutch AY, Tam SY, Zamir N, Eskay RL, Lee JM, et al. Mild footshock stress dissociates substance P from substance K and dynorphin from Met- and Leu-enkephalin. Brain Res. 1986;381(2):393–6.

    Article  CAS  PubMed  Google Scholar 

  166. Walsh DM, Stratton SC, Harvey FJ, Beresford IJ, Hagan RM. The anxiolytic-like activity of GR159897, a non-peptide NK2 receptor antagonist, in rodent and primate models of anxiety. Psychopharmacology (Berl). 1995;121(2):186–91.

    Article  CAS  Google Scholar 

  167. Keller M, Montgomery S, Ball W, Morrison M, Snavely D, Liu G, et al. Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry. 2006;59(3):216–23.

    Article  CAS  PubMed  Google Scholar 

  168. Sapolsky RM. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry. 2000;48(8):755–65.

    Article  CAS  PubMed  Google Scholar 

  169. Nowak G, Ordway GA, Paul IA. Alterations in the N-methyl-d-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res. 1995;675(1–2):157–64.

    Article  CAS  PubMed  Google Scholar 

  170. Paul IA, Nowak G, Layer RT, Popik P, Skolnick P. Adaptation of the N-methyl-d-aspartate receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther. 1994;269(1):95–102.

    CAS  PubMed  Google Scholar 

  171. Skolnick P, Miller R, Young A, Boje K, Trullas R. Chronic treatment with 1-aminocyclopropanecarboxylic acid desensitizes behavioral responses to compounds acting at the N-methyl-d-aspartate receptor complex. Psychopharmacology (Berl). 1992;107(4):489–96.

    Article  CAS  Google Scholar 

  172. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Anti­depressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.

    Article  CAS  PubMed  Google Scholar 

  173. Rogoz Z, Skuza G, Maj J, Danysz W. Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology. 2002;42(8):1024–30.

    Article  CAS  PubMed  Google Scholar 

  174. Zarate CA, Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64.

    Article  CAS  PubMed  Google Scholar 

  175. Yates M, Leake A, Candy JM, Fairbairn AF, McKeith IG, Ferrier IN. 5HT2 receptor changes in major depression. Biol Psychiatry. 1990;27(5):489–96.

    Article  CAS  PubMed  Google Scholar 

  176. Delgado PL, Miller HL, Salomon RM, Licinio J, Krystal JH, Moreno FA, et al. Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biol Psychiatry. 1999;46(2):212–20.

    Article  CAS  PubMed  Google Scholar 

  177. Shiffer HH. Glutamate receptor genes: susceptibility factors in schizophrenia and depressive patients. Mol Biol. 2002;25:191–212.

    Google Scholar 

  178. Petty F. GABA and mood disorders: a brief review and hypothesis. J Affect Disord. 1995;34(4):275–81.

    Article  CAS  PubMed  Google Scholar 

  179. Lloyd KG, Thuret F, Pilc A. Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther. 1985;235(1):191–9.

    CAS  PubMed  Google Scholar 

  180. Kimber JR, Cross JA, Horton RW. Benzodiazepine and GABAA receptors in rat brain following chronic antidepressant drug administration. Biochem Pharmacol. 1987;36(23):4173–5.

    Article  CAS  PubMed  Google Scholar 

  181. Liu R, Jolas T, Aghajanian G. Serotonin 5-HT(2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res. 2000;873(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  182. Stoll AL, Rueter S. Treatment augmentation with opiates in severe and refractory major depression. Am J Psychiatry. 1999;156(12):2017.

    CAS  PubMed  Google Scholar 

  183. Akbarian S, Rios M, Liu RJ, Gold SJ, Fong HF, Zeiler S, et al. Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons. J Neurosci. 2002;22(10):4153–62.

    CAS  PubMed  Google Scholar 

  184. Sher L. The placebo effect on mood and behavior: the role of the endogenous opioid system. Med Hypotheses. 1997;48(4):347–9.

    Article  CAS  PubMed  Google Scholar 

  185. Amanzio M, Pollo A, Maggi G, Benedetti F. Response variability to analgesics: a role for non-specific activation of endogenous opioids. Pain. 2001;90(3):205–15.

    Article  CAS  PubMed  Google Scholar 

  186. Cardinali DP. The human body circadian: how the biologic clock influences sleep and emotion. Neuro Endocrinol Lett. 2000;21(1):9–15.

    PubMed  Google Scholar 

  187. Bunney WE, Bunney BG. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology. 2000;22(4):335–45.

    Article  CAS  PubMed  Google Scholar 

  188. Lewy AJ, Bauer VK, Cutler NL, Sack RL, Ahmed S, Thomas KH, et al. Morning vs evening light treatment of patients with winter depression. Arch Gen Psychiatry. 1998;55(10):890–6.

    Article  CAS  PubMed  Google Scholar 

  189. Nofzinger EA, Price JC, Meltzer CC, Buysse DJ, Villemagne VL, Miewald JM, et al. Towards a neurobiology of dysfunctional arousal in depression: the relationship between beta EEG power and regional cerebral glucose metabolism during NREM sleep. Psychiatry Res. 2000;98(2):71–91.

    Article  CAS  PubMed  Google Scholar 

  190. Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY. Forebrain activation in REM sleep: an FDG PET study. Brain Res. 1997;770(1–2):192–201.

    Article  CAS  PubMed  Google Scholar 

  191. Clark CP, Frank LR, Brown GG. Sleep deprivation, EEG, and functional MRI in depression: preliminary results. Neuropsychopharmacology. 2001;25(5 Suppl):S79–84.

    Article  CAS  PubMed  Google Scholar 

  192. Vgontzas AN, Chrousos GP. Sleep, the hypothalamic-pituitary-adrenal axis, and cytokines: multiple interactions and disturbances in sleep disorders. Endocrinol Metab Clin North Am. 2002;31(1):15–36.

    Article  CAS  PubMed  Google Scholar 

  193. Benca RM, Obermeyer WH, Thisted RA, Gillin JC. Sleep and psychiatric disorders. A meta-analysis. Arch Gen Psychiatry. 1992;49(8):651–68; discussion 69–70.

    Google Scholar 

  194. Simon GE, VonKorff M, Piccinelli M, Fullerton C, Ormel J. An international study of the relation between somatic symptoms and depression. N Engl J Med. 1999;341(18):1329–35.

    Article  CAS  PubMed  Google Scholar 

  195. Stahl SM. Does depression hurt? J Clin Psychiatry. 2002;63(4):273–4.

    Article  PubMed  Google Scholar 

  196. Goldstein DJ, Lu Y, Detke MJ, Wiltse C, Mallinckrodt C, Demitrack MA. Duloxetine in the treatment of depression: a double-blind placebo-controlled comparison with paroxetine. J Clin Psychopharmacol. 2004;24(4):389–99.

    Article  CAS  PubMed  Google Scholar 

  197. Petrovic P, Ingvar M. Imaging cognitive modulation of pain processing. Pain. 2002;95(1–2):1–5.

    Article  PubMed  Google Scholar 

  198. Yu J, Smith GP. Affinity maturation of phage-displayed peptide ligands. Methods Enzymol. 1996;267:3–27.

    Article  CAS  PubMed  Google Scholar 

  199. Gamaro GD, Manoli LP, Torres IL, Silveira R, Dalmaz C. Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochem Int. 2003;42(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  200. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999;20(1):68–100.

    Article  CAS  PubMed  Google Scholar 

  201. Danish University Antidepressant Group. Paroxetine: a selective serotonin reuptake inhibitor showing better tolerance, but weaker antidepressant effect than clomipramine in a controlled multicenter study. J Affect Disord. 1990;18(4):289–99.

    Article  Google Scholar 

  202. Nelson JC, Mazure CM, Bowers MB, Jr., Jatlow PI. A preliminary, open study of the combination of fluoxetine and desipramine for rapid treatment of major depression. Arch Gen Psychiatry. 1991;48(4):303–7.

    Article  CAS  PubMed  Google Scholar 

  203. Entsuah AR, Huang H, Thase ME. Response and remission rates in different subpopulations with major depressive disorder administered venlafaxine, selective serotonin reuptake inhibitors, or placebo. J Clin Psychiatry. 2001;62(11):869–77.

    Article  CAS  PubMed  Google Scholar 

  204. Malhi GS, Moore J, McGuffin P. The genetics of major depressive disorder. Curr Psychiatry Rep. 2000;2(2):165–9.

    Article  CAS  PubMed  Google Scholar 

  205. Yamada M, Higuchi T. Functional genomics and depression research. Beyond the monoamine hypothesis. Eur Neuropsychopharmacol. 2002;12(3):235–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Z. Potter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goldstein, D.J., Potter, W.Z., Ciraulo, D.A., Shader, R.I. (2011). Biological Theories of Depression and Implications for Current and New Treatments. In: Ciraulo, D., Shader, R. (eds) Pharmacotherapy of Depression. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-435-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-435-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-434-0

  • Online ISBN: 978-1-60327-435-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics