Skip to main content

Study of Polytopic Membrane Protein Topological Organization as a Function of Membrane Lipid Composition

  • Protocol
  • First Online:
Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 619))

Abstract

A protocol is described using lipid mutants and thiol-specific chemical reagents to study lipid-dependent and host-specific membrane protein topogenesis by the substituted-cysteine accessibility method as applied to transmembrane domains (SCAM™). SCAM™ is adapted to follow changes in membrane protein topology as a function of changes in membrane lipid composition. The strategy described can be adapted to any membrane system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drews, J. (2006) What’s in a number? Nat. Rev. Drug Discov. 5, 975.

    Article  CAS  PubMed  Google Scholar 

  2. Goder, V., Junne, T. and Spiess, M. (2004) Sec61p contributes to signal sequence orientation according to the positive-inside rule. Mol. Biol. Cell 15, 1470–1478.

    Article  CAS  PubMed  Google Scholar 

  3. Bogdanov, M., Heacock, P.N. and Dowhan, W. (2002) A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J. 21, 2107–2116.

    Article  CAS  PubMed  Google Scholar 

  4. Bogdanov, M., Mileykovskaya, E. and Dowhan, W. (2008) Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-linked Disorders. Subcell. Biochem. 49, 197–239.

    Article  PubMed  Google Scholar 

  5. Bogdanov, M., Xie, J., Heacock, P. and Dowhan, W. (2008) To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J. Cell Biol. 182, 925–935.

    Article  CAS  PubMed  Google Scholar 

  6. Bogdanov, M., Zhang, W., Xie, J. and Dowhan, W. (2005) Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM™): application to lipid-specific membrane protein topogenesis. Methods 36, 148–171.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, X., Bogdanov, M. and Dowhan, W. (2002) Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. EMBO J. 21, 5673–5681.

    Article  CAS  PubMed  Google Scholar 

  8. Xie, J., Bogdanov, M., Heacock, P. and Dowhan, W. (2006) Phosphatidylethanolamine and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease. J. Biol. Chem. 281, 19172–19178.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, W., Bogdanov, M., Pi, J., Pittard, A.J. and Dowhan, W. (2003) Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J. Biol. Chem. 278, 50128–50135.

    Article  CAS  PubMed  Google Scholar 

  10. Dowhan, W. (2009) Molecular Genetic Approaches to Defining Lipid Function. J. Lipid Res. 50, S305–S310.

    Google Scholar 

  11. van Iwaarden, P.R., Pastore, J.C., Konings, W.N. and Kaback, H.R. (1991) Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 30, 9595–9600.

    Article  PubMed  Google Scholar 

  12. Frillingos, S., Sahin-Toth, M., Wu, J. and Kaback, H.R. (1998) Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. Faseb J. 12, 1281–1299.

    CAS  PubMed  Google Scholar 

  13. Elofsson, A. and von Heijne, G. (2007) Membrane Protein Structure: Prediction vs Reality. Annu. Rev. Biochem. 76, 125–140.

    Article  CAS  PubMed  Google Scholar 

  14. DeChavigny, A., Heacock, P.N. and Dowhan, W. (1991) Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J. Biol. Chem. 266, 5323–5332.

    CAS  PubMed  Google Scholar 

  15. Mileykovskaya, E. and Dowhan, W. (2005) Role of membrane lipids in bacterial division site selection. Curr. Opin. Microbiol. 8, 135–142.

    Article  CAS  PubMed  Google Scholar 

  16. Rietveld, A.G., Chupin, V.V., Koorengevel, M.C., Wienk, H.L., Dowhan, W. and de Kruijff, B. (1994) Regulation of lipid polymorphism is essential for the viability of phosphatidylethanolamine-deficient Escherichia coli cells. J. Biol. Chem. 269, 28670–28675.

    CAS  PubMed  Google Scholar 

  17. Wikström, M., Xie, J., Bogdanov, M., Mileykovskaya, E., Heacock, P., Wieslander, Å. and Dowhan, W. (2004) Monoglucosyldiacylglycerol, a foreign lipid, can substitute for phosphatidylethanolamine in essential membrane-associated functions in Escherichia coli. J. Biol. Chem. 279, 10484–10493.

    Article  PubMed  Google Scholar 

  18. Wikström, M., Kelly, A., Georgiev, A., Eriksson, H., Rosen-Klement, M., Bogdanov, M., Dowhan, W. and Wieslander, Å. (2009) Lipid-engineered Escherichia coli membranes reveal critical lipid head-group size for protein function. J. Biol. Chem. 284, 954–965.

    Google Scholar 

  19. Zhang, W., Campbell, H.A., King, S.C. and Dowhan, W. (2005) Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the gamma-aminobutyric acid permease (GabP) of Escherichia coli. J. Biol. Chem. 280, 26032–26038.

    Article  CAS  PubMed  Google Scholar 

  20. Sato, Y., Zhang, Y.W., A., A.-T. and Rudnick, G. (2004) Analysis of transmembrane domain 2 of rat serotonin transporter by cysteine scanning mutagenesis. J. Biol. Chem. 279, 22926–22933.

    Google Scholar 

  21. Wada, T., Long, J.C., Zhang, D. and Vik, S.B. (1999) A novel labeling approach supports the five-transmembrane model of subunit a of the Escherichia coli ATP synthase. J. Biol. Chem. 274, 17353–17357.

    Article  CAS  PubMed  Google Scholar 

  22. Cao, W. and Matherly, L.H. (2003) Characterization of a cysteine-less human reduced folate carrier: localization of a substrate-binding domain by cysteine-scanning mutagenesis and cysteine accessibility methods. Biochem. J. 374, 27–36.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, Q., Lee, D.W. and Casey, J.R. (2003) Novel topology in C-terminal region of the human plasma membrane anion exchanger, AE1. J. Biol. Chem. 278, 3112–3120.

    Article  CAS  PubMed  Google Scholar 

  24. Fujihira, E., Tamura, N. and Yamaguchi, A. (2002) Membrane topology of a multidrug efflux transporter, AcrB, in Escherichia coli. J. Biochem. 131, 145–151.

    CAS  PubMed  Google Scholar 

  25. Long, J.C., DeLeon-Rangel, J. and Vik, S.B. (2002) Characterization of the first cytoplasmic loop of subunit a of the Escherichia coli ATP synthase by surface labeling, cross-linking, and mutagenesis. J. Biol. Chem. 277, 27288–27293.

    Article  CAS  PubMed  Google Scholar 

  26. Valiyaveetil, F.I. and Fillingame, R.H. (1998) Transmembrane topography of subunit a in the Escherichia coli F1F0 ATP synthase. J. Biol. Chem. 273, 16241–16247.

    Article  CAS  PubMed  Google Scholar 

  27. Lasso, G., Antoniw, J.F. and Mullins, G.L. (2006) A combinatorial pattern discovery approach for the prediction of membrane dipping (re-entrant) loops. Bioinformatics 22, 290–297.

    Article  Google Scholar 

  28. Gafvelin, G. and von Heijne, G. (1994) Topological “frustration” in multispanning E. coli inner membrane proteins. Cell 77, 401–412.

    Article  CAS  PubMed  Google Scholar 

  29. Kimura, T., Ohnuma, M., Sawai, T. and Yamaguchi, A. (1997) Membrane topology of the transposon 10-encoded metal-tetracycline/H+ antiporter as studied by site-directed chemical labeling. J. Biol. Chem. 272, 580–585.

    Article  CAS  PubMed  Google Scholar 

  30. Martinez-Morales, F., Schobert, M., Lopez-Lara, I.M. and Geiger, O. (2003) Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149, 3461–3471.

    Article  CAS  PubMed  Google Scholar 

  31. Shiba, Y., Yokoyama, Y., Aono, Y., Kiuchi, T., Kusaka, J., Matsumoto, K. and Hara, H. (2004) Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J. Bacteriol. 186, 6526–6535.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant GM20478 and funds from the John S. Dunn Foundation awarded to W. D.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bogdanov, M., Heacock, P.N., Dowhan, W. (2010). Study of Polytopic Membrane Protein Topological Organization as a Function of Membrane Lipid Composition. In: Economou, A. (eds) Protein Secretion. Methods in Molecular Biology, vol 619. Humana Press. https://doi.org/10.1007/978-1-60327-412-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-412-8_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-167-7

  • Online ISBN: 978-1-60327-412-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics