Skip to main content

In Vitro Dissection of Protein Translocation into the Mammalian Endoplasmic Reticulum

  • Protocol
  • First Online:
Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 619))

Abstract

In eukaryotic cells, roughly one-fourth of all mRNAs code for secretory and membrane proteins. This class of proteins must first be segregated to the endoplasmic reticulum, where they are either translocated into the lumen or inserted into the lipid bilayer. The study of these processes has long relied on their successful reconstitution in cell-free systems. The high manipulability of such in vitro systems has allowed the identification of key machinery, elucidation of their functional roles in translocation, and dissection of their mechanisms of action. Here, we provide the basic methodology for (i) setting up robust mammalian-based in vitro translation and translocation systems, (ii) assays for protein translocation, insertion, and topology, and (iii) methods to solubilize, fractionate, and reconstitute ER membranes. Variations of these methods should be applicable not only to forward protein translocation systems but also for dissecting other poorly understood membrane-associated processes such as retrotranslocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walter, P., and Blobel, G. (1983) Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol 96, 84–93.

    Article  CAS  PubMed  Google Scholar 

  2. Adelman, M.R., Blobel, G., and Sabatini, D.D. (1973) An improved cell fractionation procedure for the preparation of rat liver membrane-bound ribosomes. J Cell Biol 56, 191–205.

    Article  CAS  PubMed  Google Scholar 

  3. Wilson, R., Allen, A.J., Oliver, J., Brookman, J.L., High, S., and Bulleid, N.J. (1995) The translocation, folding, assembly and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized mammalian cells. Biochem J 307, 679–687.

    CAS  PubMed  Google Scholar 

  4. Stefanovic, S., and Hegde, R.S. (2007) Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159.

    Article  CAS  PubMed  Google Scholar 

  5. Schuldiner, M., Metz, J., Schmid, V., Denic, V., Rakwalska, M., Schmitt, H.D., Schwappach, B., and Weissman, J.S. (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645.

    Article  CAS  PubMed  Google Scholar 

  6. Daniels, R., Kurowski, B., Johnson, A.E., and Hebert, D.N. (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 11, 79–90.

    Article  CAS  PubMed  Google Scholar 

  7. Oberdorf, J., and Skach, W.R. (2002) In vitro reconstitution of CFTR biogenesis and degradation. Methods Mol Med 70, 295–310.

    CAS  PubMed  Google Scholar 

  8. Brambillasca, S., Yabal, M., Soffientini, P., Stefanovic, S., Makarow, M., Hegde, R.S., and Borgese, N. (2005) Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. EMBO J 24, 2533–2542.

    Article  CAS  PubMed  Google Scholar 

  9. Fons, R.D., Bogert, B.A., and Hegde, R.S. (2003) Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol 160, 529–539.

    Article  CAS  PubMed  Google Scholar 

  10. Garrison, J.L., Kunkel, E.J., Hegde, R.S., and Taunton J. (2005) A substrate-specific inhibitor of protein translocation into the endoplasmic reticulum. Nature 436, 285–289.

    Article  CAS  PubMed  Google Scholar 

  11. Görlich, D., and Rapoport, T.A. (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615–630.

    Article  PubMed  Google Scholar 

  12. Jackson, R.J., and Hunt, T. (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol 96, 50–74.

    Article  CAS  PubMed  Google Scholar 

  13. Trachsel, H., Ranu, R.S., and London, I.M. (1978) Regulation of protein synthesis in rabbit reticulocyte lysates: purification and characterization of heme-reversible translational inhibitor. Proc Natl Acad Sci USA 75, 3654–3658.

    Article  CAS  PubMed  Google Scholar 

  14. Helenius, A., and Simons, K. (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415, 29–79.

    CAS  PubMed  Google Scholar 

  15. Perara, E., Rothman, R.E., and Lingappa, V.R. (1986) Uncoupling translocation from translation: implications for transport of proteins across membranes. Science 232, 348–352.

    Article  CAS  PubMed  Google Scholar 

  16. Wiedmann, M., Kurzchalia, T.V., Hartmann, E., and Rapoport, T.A. (1987) A signal sequence receptor in the endoplasmic reticulum membrane. Nature 328, 830–833.

    Article  CAS  PubMed  Google Scholar 

  17. Görlich, D., Hartmann, E., Prehn, S., and Rapoport, T.A. (1992) A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 357, 47–52.

    Article  PubMed  Google Scholar 

  18. Crowley, K.S., Reinhart, G.D., and Johnson, A.E. (1993) The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115.

    Article  CAS  PubMed  Google Scholar 

  19. Hegde, R.S., and Lingappa, V.R. (1996) Sequence-specific alteration of the ribosome-membrane junction exposes nascent secretory proteins to the cytosol. Cell 85, 217–228.

    Article  CAS  PubMed  Google Scholar 

  20. Hegde, R.S., Mastrianni, J.A., Scott, M.R., DeFea, K.A., Tremblay, P., Torchia, M., DeArmond, S.J., Prusiner, S.B., and Lingappa, V.R. (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827–834.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the Hegde lab is supported by the NICHD Intramural Research Program of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sharma, A., Mariappan, M., Appathurai, S., Hegde, R.S. (2010). In Vitro Dissection of Protein Translocation into the Mammalian Endoplasmic Reticulum. In: Economou, A. (eds) Protein Secretion. Methods in Molecular Biology, vol 619. Humana Press. https://doi.org/10.1007/978-1-60327-412-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-412-8_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-167-7

  • Online ISBN: 978-1-60327-412-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics