Skip to main content

Cloning Full-Length Transcripts and Transcript Variants Using 5′ and 3′ RACE

  • Protocol
  • First Online:
Lipoproteins and Cardiovascular Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1027))

Abstract

Gene transcripts and transcript variants must be cloned to characterize gene function and regulation. However, obtaining full-length cDNAs with accurate sequences from the 5′ end through to the 3′ end can be challenging. Here we describe a reverse-transcriptase-based method for obtaining full-length cDNAs using the SMARTer (“Switching Mechanism At RNA Termini”) RACE technology developed by Clontech. RNA is isolated from the tissue of interest and annealed to a primer (a modified oligo(dT) primer for polyA+ transcripts; random hexamers or a gene-specific primer for polyA− transcripts). A modified MMLV-reverse transcriptase uses the primer to initiate cDNA synthesis from RNA transcript(s) annealed to the primer and continues cDNA synthesis (reverse transcription) towards the 5′ end of the transcript(s). Importantly, this reverse transcriptase possesses terminal transferase activity, so when it reaches the 5′ end of a transcript it adds a 3–5 residue “tail” to the newly synthesized cDNA strand. Included in the reverse transcriptase reaction mix is an oligonucleotide containing a sequence tag as well as a terminal series of modified bases that anneal to the 3–5 residue tail on the newly synthesized cDNA. The reverse transcriptase proceeds from the end of the transcript onwards into the modified bases and the rest of the sequence-tagged oligo. The newly synthesized cDNA now has a sequence tag attached to it and can be used as a template for PCR, with one primer complementary to the sequence tag and the second primer specific to the gene of interest. The fragment can be cloned and sequenced or just sequenced directly. If high-quality, undegraded RNA is used, obtaining the true 5′ end of a transcript is greatly enhanced. In combination with 3′ RACE, full-length transcripts are easily cloned. This method provides sequence information on important regulatory regions, such as 5′ and 3′ UTRs and flanking regions, and is ideal for detecting transcript variants, including those with alternative transcriptional start sites, alternative splicing, and/or alternative polyadenylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gustincich S, Sandelin A, Plessy C, Katayama S, Simone R, Lazarevic D, Hayashizaki Y, Carninci P (2006) The complexity of the mammalian transcriptome. J Physiol 575:321–332

    Article  PubMed  CAS  Google Scholar 

  2. Hume DA (2008) Our evolving knowledge of the transcriptional landscape. Mamm Genome 19:663–666

    Article  PubMed  Google Scholar 

  3. Singer GA, Wu J, Yan P, Plass C, Huang TH, Davuluri RV (2008) Genome-wide analysis of alternative promoters of human genes using a custom promoter tiling array. BMC Genomics 9:349

    Article  PubMed  Google Scholar 

  4. Kim E, Goren A, Ast G (2008) Alternative splicing: current perspectives. Bioessays 30:38–47

    Article  PubMed  CAS  Google Scholar 

  5. Hiller M, Platzer M (2008) Widespread and subtle: alternative splicing at short-distance tandem sites. Trends Genet 24:246–255

    Article  PubMed  CAS  Google Scholar 

  6. Affymetrix/CSHL ENCODE Project (2009) Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457:1028–1032

    Article  Google Scholar 

  7. Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50:831–840

    Article  PubMed  CAS  Google Scholar 

  8. Chen SH, Habib G, Yang CY, Gu ZW, Lee BR, Weng SA, Silberman SR, Cai SJ, Deslypere JP, Rosseneu M (1987) Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238:363–366

    Article  PubMed  CAS  Google Scholar 

  9. Carninci P (2006) Tagging mammalian transcription complexity. Trends Genet 22:501–510

    Article  PubMed  CAS  Google Scholar 

  10. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848

    Article  PubMed  CAS  Google Scholar 

  11. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    Article  PubMed  CAS  Google Scholar 

  12. Carninci P (2009) Molecular biology: the long and short of RNAs. Nature 457:974–975

    Article  PubMed  CAS  Google Scholar 

  13. Hao S, Baltimore D (2009) The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nat Immunol 10:281–288

    Article  PubMed  CAS  Google Scholar 

  14. Clontech (2009) SMARTer RACE cDNA amplification kit user manual. Clontech, Mountain View, CA, pp 1–33

    Google Scholar 

  15. Kong W, Zhao JJ, He L, Cheng JQ (2009) Strategies for profiling microRNA expression. J Cell Physiol 218:22–25

    Article  PubMed  CAS  Google Scholar 

  16. Sdassi N, Silveri L, Laubier J, Tilly G, Costa J, Layani S, Vilotte JL, Le PF (2009) Identification and characterization of new miRNAs cloned from normal mouse mammary gland. BMC Genomics 10:149

    Article  PubMed  Google Scholar 

  17. Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M, Sasaki D, Imamura K, Kai C, Harbers M, Hayashizaki Y, Carninci P (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222

    Article  PubMed  CAS  Google Scholar 

  18. Olivarius S, Plessy C, Carninci P (2009) High-throughput verification of transcriptional starting sites by Deep-RACE. Biotechniques 46:130–132

    Article  PubMed  CAS  Google Scholar 

  19. Youngblood V, Taylor JV (2010) Sequencing PCR-amplified DNA in lipoprotein and cardiovascular disease research. In: Freeman LA (ed.) Methods in molecular biology: lipoproteins, 2nd edn, Walker JM (series ed.). Humana, Totowa, NJ

    Google Scholar 

  20. Diaw L, Youngblood V, Taylor JV (2010) Introduction to next-generation nucleic acid sequencing in cardiovascular disease research. In: Freeman LA (ed.) Methods in molecular biology: lipoproteins, 2nd edn, Walker JM (series ed.). Humana, Totowa, NJ

    Google Scholar 

  21. Wagner EM (2010) Monitoring gene expression: quantitative real-time RT-PCR. In: Freeman LA (ed.) Methods in molecular biology: lipoproteins, 2nd edn, Walker JM (series ed.). Humana, Totowa, NJ

    Google Scholar 

  22. Raghavachari N (2010) Microarray technology: basic methodology and application in clinical research for biomarker discovery in vascular diseases. In: Freeman LA (ed.) Methods in molecular biology: lipoproteins, 2nd edn, Walker JM (series ed.). Humana, Totowa, NJ

    Google Scholar 

  23. Koscielny G, Le TV, Gopalakrishnan C, Kumanduri V, Riethoven JJ, Nardone F, Stanley E, Fallsehr C, Hofmann O, Kull M, Harrington E, Boue S, Eyras E, Plass M, Lopez F, Ritchie W, Moucadel V, Ara T, Pospisil H, Herrmann A, Reich G, Guigo R, Bork P, Doeberitz MK, Vilo J, Hide W, Apweiler R, Thanaraj TA, Gautheret D (2009) ASTD: the alternative splicing and transcript diversity database. Genomics 93:213–220

    Article  PubMed  CAS  Google Scholar 

  24. Sabol SL, Brewer HB Jr, Santamarina-Fojo S (2005) The human ABCG1 gene: identification of LXR response elements that modulate expression in macrophages and liver. J Lipid Res 46:2151–2167

    Article  PubMed  CAS  Google Scholar 

  25. Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, Hayashizaki Y (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781

    Article  PubMed  CAS  Google Scholar 

  26. Xu YX, Manley JL (2007) Pin1 modulates RNA polymerase II activity during the transcription cycle. Genes Dev 21:2950–2962

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Freeman, L.A. (2013). Cloning Full-Length Transcripts and Transcript Variants Using 5′ and 3′ RACE. In: Freeman, L. (eds) Lipoproteins and Cardiovascular Disease. Methods in Molecular Biology, vol 1027. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-369-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-369-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-368-8

  • Online ISBN: 978-1-60327-369-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics